Abstract
This paper deals with the computational analysis of musical structures by focusing on the use of morphological filters. We first propose to generalize the notion of melodic contour to a chord sequence with the chord contour, representing some formal intervallic relations between two given chords. By defining a semi-metric, we compute the self-distance matrix of a chord contour sequence. This method allows generating a self-distance matrix for symbolic music representations. Self-distance matrices are used in the analysis of musical structures because blocks around the diagonal provide structural information on a musical piece. The main contribution of this paper comes from the analysis of these matrices based on mathematical morphology. Morphological filters are used to homogenize and detect regions in the self-distance matrices. Specifically, the opening operation has been successfully applied to reveal the blocks around the diagonal because it removes small details such as high local values and reduces all blocks around the diagonal to a zero value. Moreover, by varying the size of the morphological filter, it is possible to detect musical structures at different scales. A large opening filter identifies the main global parts of the piece, while a smaller one finds shorter musical sections. We discuss some examples that demonstrate the usefulness of this approach to detect the structures of a musical piece and its novelty within the field of symbolic music information research.
This work was partly supported by the chair of I. Bloch in Artificial Intelligence (Sorbonne Université and SCAI).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, C.R.: Melodic contour typology. Ethnomusicology 20(2), 179–215 (1976)
Agon, C., Andreatta, M., Atif, J., Bloch, I., Mascarade, P.: Musical descriptions based on formal concept analysis and mathematical morphology. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 105–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_9
Anagnostopoulou, C., Giraud, M., Poulakis, N.: Melodic contour representations in the analysis of children’s songs. In: van Kranenburg, P., Anagnostopoulou, C., Volk, A. (eds.) 3rd International Workshop on Folk Music Analysis, pp. 40–43. Amsterdam, Netherlands (2013)
Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857–944. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_14
Buteau, C., Mazzola, G.: Motivic analysis according to Rudolph Réti: formalization by a topological model. J. Math. Music 2(3), 117–134 (2008)
Dowling, W.J.: Melodic contour in hearing and remembering melodies. In: Aiello, R., Sloboda, J.A. (eds.) Musical Perceptions, pp. 173–190. Oxford University Press, Oxford (1994)
Foote, J.: Visualizing music and audio using self-similarity. In: Seventh ACM International Conference on Multimedia (Part 1), pp. 77–80 (1999)
Foote, J.: Automatic audio segmentation using a measure of audio novelty. In: IEEE International Conference on Multimedia and Expo, ICME 2000. Latest Advances in the Fast Changing World of Multimedia, vol. 1, pp. 452–455 (2000)
Hadwiger, H.: Minkowskische Addition und Subtraktion beliebiger Punkt-mengen und die Theoreme von Erhard Schmidt. Mathematische Zeitschrift 53, 210–218 (1950)
Heijmans, H.: Morphological Image Operators. Advances in Electronics and Electron Physics: Supplements. Academic Press (1994)
Heijmans, H., Ronse, C.: The algebraic basis of mathematical morphology I. dilations and erosions. Comput. Vis. Graph. Image Process. 50(3), 245–295 (1990)
Karvonen, M., Laitinen, M., Lemström, K., Vikman, J.: Error-tolerant content-based music-retrieval with mathematical morphology. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds.) CMMR 2010. LNCS, vol. 6684, pp. 321–337. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23126-1_20
Karvonen, M., Lemström, K.: Using mathematical morphology for geometric music information retrieval. In: International Workshop on Machine Learning and Music, MML 2008, Helsinki, Finland (2008)
Lascabettes, P., Bloch, I., Agon, C.: Analyse de représentations spatiales de la musique par des opérateurs simples de morphologie mathématique. Journées d’Informatique Musicale (2020)
Lu, L., Wang, M., Zhang, H.J.: Repeating pattern discovery and structure analysis from acoustic music data. In: 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 275–282 (2004)
Marvin, E.W., Laprade, P.A.: Relating musical contours: extensions of a theory for contour. J. Music Theory 31(2), 225–267 (1987)
Minkowski, H.: Volumen und Oberfläche. Mathematische Annalen 57, 447–495 (1903)
Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. ISTE-Wiley (2010)
Paulus, J., Müller, M., Klapuri, A.: State of the art report: audio-based music structure analysis. In: ISMIR, Utrecht, pp. 625–636 (2010)
Quinn, I.: The combinatorial model of pitch contour. Music Percept.: Interdiscip. J. 16(4), 439–456 (1999)
Ronse, C., Heijmans, H.: The algebraic basis of mathematical morphology: II. openings and closings. CVGIP: Image Underst. 54(1), 74–97 (1991)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., London (1982)
Trehub, S.E., Bull, D., Thorpe, L.A.: Infants’ perception of melodies: the role of melodic contour. Child Dev. 55(3), 821–830 (1984)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lascabettes, P., Agon, C., Andreatta, M., Bloch, I. (2022). Computational Analysis of Musical Structures Based on Morphological Filters. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-07015-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07014-3
Online ISBN: 978-3-031-07015-0
eBook Packages: Computer ScienceComputer Science (R0)