Abstract
This paper explores the classification of metric types using different feature representations. Using weighted timepoint, DFT, and autocorrelation, we train feedforward neural networks to distinguish allemandes, courantes, sarabandes, and gavottes in the Yale-Classical Archives Corpus. Autocorrelation and DFT models perform better than a baseline, with DFT consistently better by a small amount.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For \(k > N/2\), \(F_k(X)\) and \(F_{N-k}(X)\) have equal magnitude and opposite phase for a real-valued signal, X, by the aliasing principle.
- 2.
We include only even values here, because the zero padding produces distracting artifacts in the odd coefficients.
References
Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2018)
Amiot, E.: Music Through Fourier Space. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-45581-5
Brown, J.C.: Determination of the meter of musical scores by autocorrelation. J. Acoust. Soc. Am. 94(4), 1953–1957 (1993)
Chiu, M.: Form as meter: metric forms through Fourier space. Master’s thesis, Boston University (2018)
Cohn, R.: Preferatory note: how music theorists model time. J. Music Theory 65(1), 11–16 (2021)
Eck, D.: Identifying metrical and temporal structure with an autocorrelation phase matrix. Music. Percept. 24(2), 167–176 (2006)
Flannick, J.E., Hall, R.W., Kelly, R.: Detecting meter in recorded music. In: Sarhangi, R., Moody, R.V. (eds.) Renaissance Banff: Mathematics, Music, Art, Culture, pp. 195–202. Bridges Proceedings (2005)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music, Reissue, with a New Preface. MIT Press (1996)
Povel, D.J., Essens, P.: Perception of temporal patterns. Music. Percept. 2(4), 411–440 (1985)
Sethares, W.A., Staley, T.W.: Meter and periodicity in musical performance. J. New Music Res. 22(5), 149–158 (2001)
Eerola, T., Toiviainen, P.: MIDI Toolbox: MATLAB Tools for Music Research. University of Jyväskylä, Finland (2004)
White, C.W.: Meter’s influence on theoretical and corpus-derived harmonic grammars. Indiana Theory Rev. 35(1–2), 93–116 (2018)
White, C.W.: Autocorrelation of pitch-event vectors in meter finding. In: Montiel, M., Gomez-Martin, F., AgustÃn-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 287–296. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_23
White, C.W.: Some observations on autocorrelated patterns within computational meter identification. J. Math. Music 15(2), 181–193 (2021)
White, C.W., Quinn, I.: The Yale-classical archives corpus. Empirical Musicology Rev. 11(1), 50–58 (2016)
Yust, J.: Organized Time: Rhythm, Tonality, and Form. Oxford University Press, NY (2018)
Yust, J.: Steve Reich’s signature rhythm and an introduction to rhythmic qualities. Music Theory Spectr. 43(1), 74–90 (2021)
Yust, J.: Periodicity-based descriptions of rhythms and Steve Reich’s rhythmic style. J. Music Theory 65(2), 325–374 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chiu, M., Yust, J. (2022). Identifying Metric Types with Optimized DFT and Autocorrelation Models. In: Montiel, M., AgustÃn-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-07015-0_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07014-3
Online ISBN: 978-3-031-07015-0
eBook Packages: Computer ScienceComputer Science (R0)