Abstract
Motivated through recent applications of quantum theory to the music-theoretical conceptualisation of tonal attraction, the paper recapitulates basic facts about quantum wave functions over the finite configuration space \(\mathbb {Z}_n\), and proposes a particular musical application.
After an introduction of position and momentum operators, the Fourier transform as well as the translation and ondulation operators, particular attention is plaid to the Quantum Harmonic Oscillator via its Hamilton operator and its eigenstates. In this setup the time development of chosen wave functions is applied to the control of moving sound sources in a Spatialisation scenario.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amiot, E.: Music Through Fourier Space. Discrete Fourier Transform in Music Theory, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45581-5
Blutner, R., beim Graben, P.: Gauge models of musical forces. J. Math. Music 15(1), 17–36 (2021). https://doi.org/10.1080/17459737.2020.1716404
Clampitt, D., Noll, T.: Modes, the height-width duality, and Handschin’s tone character. Music Theor. Online, 17(1) (2011). http://www.mtosmt.org/issues/mto.11.17.1/mto.11.17.1.clampitt_and_noll.html
De La Torre, A.C., Goyeneche, D.: Quantum mechanics in finite-dimensional Hilbert space. Am. J. Phys. 71(1), 49–54 (2003)
Ebeling, M.: Tonhöhe: Physikalisch - Musikalisch - Psychologisch - Mathematisch. Peter Lang, Frankfurt a.M (1999)
Feichtinger, H..G., Hazewinkel, M., Kaiblinger, N., Matusiak, E., Neuhauser, M.: Metaplectic operators on \(\mathbb{C}^n\). Q. J. Math. 59(1), 15–28 (2007). https://doi.org/10.1093/qmath/ham023
beim Graben, P.: Musical pitch quantization as an eigenvalue problem. J. Math. Music 14(3), 329–346 (2020). https://doi.org/10.1080/17459737.2020.1763488
Hall, Brian C..: Quantum Theory for Mathematicians. GTM, vol. 267. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7116-5
Beim Graben, P., Blutner, R.: Quantum approaches to music cognition. Quantum Theory Mathematicians 91, 38–50 (2019)
Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67(3), 267–320 (2004). https://doi.org/10.1088/0034-4885/67/3/r03
Vourdas, A., Banderier, C.: Symplectic transformations and quantum tomography in finite quantum systems. J. Phys. Math. Theor. 43(4), 042001 (2010). https://doi.org/10.1088/1751-8113/43/4/042001
Yust, Jason: Applications of DFT to the theory of twentieth-century harmony. In: Collins, Tom, Meredith, David, Volk, Anja (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 207–218. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20603-5_22
Yust, J.: Schubert’s harmonic language and Fourier phase space. J. Music Theory 59(1), 121–181 (2015). https://doi.org/10.1215/00222909-2863409
Yust, J.: Harmonic qualities in Debussy’s Les sons et les parfums tournent dans l’air du soir. J. Math. Music 11(2–3), 155–173 (2017). https://doi.org/10.1080/17459737.2018.1450457
Yust, Jason: Probing questions about keys: tonal distributions through the DFT. In: Agustín-Aquino, Octavio A.., Lluis-Puebla, Emilio, Montiel, Mariana (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 167–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71827-9_13
Yust, J.: Geometric Generalizations of the Tonnetz and Their Relation to Fourier Phases Spaces, Chapter 13, pp. 253–277. World Scientific (2018). https://doi.org/10.1142/9789813235311_0013. https://www.worldscientific.com
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Noll, T., Graben, P.B. (2022). Quantum-Musical Explorations on \(\mathbb {Z}_n\). In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-07015-0_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07014-3
Online ISBN: 978-3-031-07015-0
eBook Packages: Computer ScienceComputer Science (R0)