Skip to main content

The Mystery of Anatol Vieru’s Periodic Sequences Unveiled

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2022)

Abstract

In [10], Anatol Vieru proposed a compositional technique based on an algorithmic manipulation of periodic sequences in \( \mathbb Z_{12} \). This technique was translated in mathematical terms in ([3, 4, 8]). Two mathematical problems arose starting from the so called Vieru’s sequence V: period of primitives and proliferation of values. In this paper we announce, providing only the sketch of the proofs, the solution of these questions in a purely algebraic way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ancelotti, N.: On some algebraic aspects of Anatol Vieru Periodic Sequences. Tesi di Laurea Triennale in Matematica, Università degli Studi di Padova, Relatore L. Fiorot

    Google Scholar 

  2. Andreatta, M., Vuza, D.T.: On some properties of periodic sequences in Anatol Vieru’s modal theory. Tatra Mt. Math. Publ. 23, 1–15 (2001)

    Google Scholar 

  3. Andreatta, M., Agon, C., Vuza, D.T.: Analyse et implémentation de certaines techniques compositionnelles chez Anatol Vieru, pp. 167–176. Marseille, Actes des Journées d’Informatique Musicale (2002)

    Google Scholar 

  4. Andreatta, M., Vuza, D.T., Agon, C.: On some theoretical and computational aspects of Anatol Vieru’s periodic sequences. Soft Comput. 8(9), 588–596 (2004). https://doi.org/10.1007/s00500-004-0382-7

    Article  Google Scholar 

  5. Davis, K.S., Webb, W.A.: Lucas’ theorem for prime powers. European J. Combin. 11(3), 229–233 (1990)

    Article  Google Scholar 

  6. Fine, N.J.: Binomial coefficients modulo a prime. Amer. Math. Monthly 54, 589–592 (1947)

    Article  Google Scholar 

  7. Kummer, E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math. 44, 93–146 (1852)

    Google Scholar 

  8. Lanthier, P., Guichaoua, C., Andreatta, M.: Reinterpreting and extending Anatol Vieru’s periodic sequences through the cellular automata formalisms. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 261–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_21

    Chapter  Google Scholar 

  9. Mariconda, C., Tonolo, A.: Discrete Calculus. U, vol. 103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-03038-8

    Book  Google Scholar 

  10. Vieru, A.: The Book of Modes. Editura Muzicala, Bucharest (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Gilblas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiorot, L., Tonolo, A., Gilblas, R. (2022). The Mystery of Anatol Vieru’s Periodic Sequences Unveiled. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07015-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07014-3

  • Online ISBN: 978-3-031-07015-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics