Skip to main content

Euler’s “Tentamen”: Historical and Mathematical Aspects on the Consonance Theory

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2022)

Abstract

The Tentamen novae theoriae musicae is a treatise in which Euler elaborated a new music theory using mathematics. The aim of this paper is to explain his theoretical system to justify the pleasure of listening to music and to analyze differences and similarities with other consonance theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    G. Ernstroem, Bericht an die Eulerkommission der Schweizerschen naturforschenden Gesellshaft iber die Eulerchen Manuskripte der Petersburg Akademie, in “Jahresbericht der Deutchen Mathematiker-Vereinigung, 22”, 1913, p. 197.

  2. 2.

    See [8] p. 7.

  3. 3.

    This is the essay Grosse General-Bass-Schuule, published in 1731 in Hamburg and also cited in Tentamen.

  4. 4.

    Carl Philipp Emanuel Bach (1714–1788), composer, p. 45 [21].

  5. 5.

    Johann Joachim Quantz (1697–1773), composer and music theorist, p. 715 [21].

  6. 6.

    Carl Heinreich Graun (1701–1759), Johann Gottlieb Graun (1702 o 1703–1771), composers, p. 360 [21].

  7. 7.

    Johann Sebastian Bach (1685–1750), composer, pa. 46 [21].

  8. 8.

    Baldassarre Galuppi (1706–1785), known as Buranello, Master of the Ducal Chapel of San Marco in Venice, stayed there from 1756 to 1768, p. 333 [21].

  9. 9.

    Giuseppe Tartini (1692–1770), composer, violinist and music theorist, p. 880 [21].

  10. 10.

    Jean-Philippe Rameau (1683–1764), composer and music theorist, p. 725 [21].

  11. 11.

    L. Euler, Tentamen, chap. X, par.19.

  12. 12.

    R. Descartes, emph Compendium Musicae, Utrecht, 1650, ed. mod. Abregé de musique, Édition nouvelle, in traduction, presentation and notes by Fr. de Buzon, Paris, Presses Universitaires de France, 1987. Cf. p. 55: “Media ad finem, vel soni affectiones duae sunt praecipue: nempe huius differentiae, in ratione durationis vel temporis, et in ratione intensionis circa acutum aut grave”.

  13. 13.

    We observe that throughout the work, Euler speaks of sound but never of sound waves.

  14. 14.

    This is clearly the frequency of the sound wave.

  15. 15.

    De Piero hypothesizes that what Euler defines barbarians are populations living outside Europe.

References

  1. Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 38–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0_3

    Chapter  Google Scholar 

  2. Caddeo, R., Hascher, X., Jehel, P., Papadopoulos, A., Papadopoulos, H.: Leonhard Euler-Écrits sur la musique. Hermann-Collection GREAM, Paris (2015)

    Google Scholar 

  3. Calinger, R.: Leonhard Euler: The First St. Petersburg Years (1727–1741). Historia Mathematica, vol. 23 (1996)

    Google Scholar 

  4. Cannas, S.: Geometric Representation and Algebraic Formalization of Musical Structures Ph.D. dissertation, Université de Strasbourg and Università degli Studi di Pavia e di Milano-Bicocca (2018)

    Google Scholar 

  5. Cannas, S., Antonini, S., Pernazza, L.: On the group of transformations of classical types of seventh chords. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 13–25. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71827-9_2

    Chapter  Google Scholar 

  6. Cannas, S., Andreatta, M.: A generalized dual of the Tonnetz for seventh chords: mathematical, computational and compositional aspects. In: Bridges Conference Proceedings, Stockholm (2018)

    Google Scholar 

  7. Catanzaro, M.J.: Generalized Tonnetze. J. Math. Music 5(2), 117–139 (2011)

    Article  Google Scholar 

  8. De Piero, A.: Il Tentamen novae theoriae musicae di Lehonard Euler (Pietroburgo 1739): traduzione e introduzione. Memorie della Accademia delle Scienze di Torino: Serie V, vol. 34 (2010)

    Google Scholar 

  9. Descartes, R.: Compendium musicae (1618)

    Google Scholar 

  10. Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual transformation, and modes of limited transposition. J. Music Theory 42(2), 241–263 (1998)

    Article  Google Scholar 

  11. Euler, L.: Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae. Opera Omnia, Series 3, vol. 1 (1739)

    Google Scholar 

  12. Hascher, X., Papadopoulos, A.: Leonhard Euler, mathématicien, physicien et théoricien de la musique. CNRS Édition, Paris (2015)

    Google Scholar 

  13. Hellegouarch, Y.: L’“Essai d’une nouvelle théorie de la musique” de Leonhard Euler, publication of l’IREM Paris Nord (1986)

    Google Scholar 

  14. Hindemith, P.: Craft of Musical Composition. Schott (1942)

    Google Scholar 

  15. Hook, J: Uniform triadic transformations. J. Music Theory 46(1–2) (2002)

    Google Scholar 

  16. Leibniz, G.: Viri illustris Godefridi Guilielmi Leibnitii: epistolae ad diversos. Ed. Christian Kortholt, vol. 4, leipzig (1734–1742)

    Google Scholar 

  17. Mersenne, M.: Harmonie universelle (1636)

    Google Scholar 

  18. Parncutt, R., Hair, G.: Consonance and dissonance in music theory and psychology: disentangling dissonant dichotomies. J. Interdiscip. Music Stud. 5(2), 119–166 (2011)

    Google Scholar 

  19. Tenney, J.: A History of “Consonance” and “Dissonance”. Excelsior Music Publishing Company, New York (1988)

    Google Scholar 

  20. Tymoczko, D.: The generalized Tonnetz. J. Music Theory 56(1), 1–52 (2012)

    Article  Google Scholar 

  21. Vv. Aa.: Enciclopedia della musica. Le Garzantine, Garzanti libri (1999)

    Google Scholar 

  22. Zarlino, G.: Le istitutioni harmoniche. Francesco Senese, Venezia (1558)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Cannas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cannas, S., Polo, M. (2022). Euler’s “Tentamen”: Historical and Mathematical Aspects on the Consonance Theory. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07015-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07014-3

  • Online ISBN: 978-3-031-07015-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics