Skip to main content

Families of SNARK-Friendly 2-Chains of Elliptic Curves

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Abstract

At CANS’20, El Housni and Guillevic introduced a new 2-chain of pairing-friendly elliptic curves for recursive zero-knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) made of the former BLS12-377 curve (a Barreto–Lynn–Scott curve over a 377-bit prime field) and the new BW6-761 curve (a Brezing–Weng curve of embedding degree 6 over a 761-bit prime field). First we generalise the curve construction, the pairing formulas (\(e :\mathbb G_1 \times \mathbb G_2 \rightarrow \mathbb G_T\)) and the group operations to any BW6 curve defined on top of any BLS12 curve, forming a family of 2-chain pairing-friendly curves.

Second, we investigate other possible 2-chain families made on top of the BLS12 and BLS24 curves. We compare BW6 to Cocks–Pinch curves of higher embedding degrees 8 and 12 (CP8, CP12) at the 128-bit security level. We derive formulas for efficient optimal ate and optimal Tate pairings on our new CP curves. We show that for both BLS12 and BLS24, the BW6 construction always gives the fastest pairing and curve arithmetic compared to Cocks-Pinch curves. Finally, we suggest a short list of curves suitable for Groth16 and KZG-based universal SNARKs and present an optimized implementation of these curves. Based on Groth16 and PlonK (a KZG-based SNARK) implementations in the gnark ecosystem, we obtain that the BLS12-377/BW6-761 pair is optimized for the former while the BLS24-315/BW6-672 pair is optimized for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://members.loria.fr/AGuillevic/pairing-friendly-curves/.

  2. 2.

    SageMath code available at https://gitlab.inria.fr/tnfs-alpha/alpha.

References

  1. Aranha, D.F., Barreto, P.S.L.M., Longa, P., Ricardini, J.E.: The realm of the pairings. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 3–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_1

    Chapter  Google Scholar 

  2. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_5

    Chapter  Google Scholar 

  3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryptol. 32(4), 1298–1336 (2019). https://doi.org/10.1007/s00145-018-9280-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_19

    Chapter  Google Scholar 

  5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_16

    Chapter  Google Scholar 

  6. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery identification. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 454–473. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_26

    Chapter  Google Scholar 

  7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012. https://doi.org/10.1145/2090236.2090263

  8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488623

  9. Botrel, G., Piellard, T., Housni, Y.E., Kubjas, I., Tabaie, A.: Consensys/gnark: v0.6.0, January 2022. https://doi.org/10.5281/zenodo.5819105

  10. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling decentralized private computation. In: 2020 IEEE Symposium on Security and Privacy, pp. 947–964. IEEE Computer Society Press, May 2020. https://doi.org/10.1109/SP40000.2020.00050

  11. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26

    Chapter  Google Scholar 

  12. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 224–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_14

    Chapter  Google Scholar 

  13. De Micheli, G., Gaudry, P., Pierrot, C.: Lattice enumeration for tower NFS: a 521-bit discrete logarithm computation. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 67–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_3

    Chapter  Google Scholar 

  14. El Housni, Y.: A fork of gnark-crypto: Golang library for finite fields, fft, and elliptic curves (2021). https://github.com/yelhousni/gnark-crypto

  15. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 259–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5_13

    Chapter  Google Scholar 

  16. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves. ePrint 2021/1359 (2021)

    Google Scholar 

  17. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves (2021). MIT License. https://gitlab.inria.fr/zk-curves/snark-2-chains

  18. Fotiadis, G., Konstantinou, E.: TNFS resistant families of pairing-friendly elliptic curves. Theor. Comput. Sci. 800, 73–89 (2019). https://doi.org/10.1016/j.tcs.2019.10.017

    Article  MathSciNet  MATH  Google Scholar 

  19. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-9048-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Gabizon, A., Williamson, Z.J.: plookup: a simplified polynomial protocol for lookup tables. ePrint 2020/315 (2020)

    Google Scholar 

  21. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. ePrint 2019/953 (2019)

    Google Scholar 

  22. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_30

    Chapter  Google Scholar 

  23. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 209–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_13

    Chapter  Google Scholar 

  24. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: a new hash function for zero-knowledge proof systems. In: USENIX Security Symposium (2021)

    Google Scholar 

  25. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  26. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 535–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_19

    Chapter  Google Scholar 

  27. Guillevic, A., Masson, S., Thomé, E.: Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation. Des. Codes Cryptogr. 88, 1047–1081 (2020). https://doi.org/10.1007/s10623-020-00727-w

    Article  MathSciNet  MATH  Google Scholar 

  28. Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number field sieve algorithm. Math. Cryptol. 1(1), 1–39 (2021). https://journals.flvc.org/mathcryptology/article/view/125142

  29. Hayashida, D., Hayasaka, K., Teruya, T.: Efficient final exponentiation via cyclotomic structure for pairings over families of elliptic curves. ePrint 2020/875 (2020)

    Google Scholar 

  30. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf. Theory 52(10), 4595–4602 (2006). https://doi.org/10.1109/TIT.2006.881709

    Article  MathSciNet  MATH  Google Scholar 

  31. Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281), 555–579 (2013). https://doi.org/10.1090/S0025-5718-2012-02625-1

    Article  MathSciNet  MATH  Google Scholar 

  32. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  33. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.org/10.1145/129712.129782

  34. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_20

    Chapter  Google Scholar 

  35. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Computer Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746

  36. Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Comb. Theory Ser. A 46(2), 183–211 (1987). https://doi.org/10.1016/0097-3165(87)90003-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Scott, M.: A note on group membership tests for \(\mathbb{G}_1\), \(\mathbb{G}_2\) and \(\mathbb{G}_{T}\) on BLS pairing-friendly curves. ePrint 2021/1130 (2021)

    Google Scholar 

  38. Scott, M.: Pairing implementation revisited. ePrint 2019/077 (2019)

    Google Scholar 

  39. Scott, M.: Unbalancing pairing-based key exchange protocols. ePrint 2013/688 (2013)

    Google Scholar 

  40. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Springer, Dordrecht (2009). https://doi.org/10.1007/978-0-387-09494-6

    Book  MATH  Google Scholar 

  41. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1

    Chapter  MATH  Google Scholar 

  42. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010). https://doi.org/10.1109/TIT.2009.2034881

    Article  MathSciNet  MATH  Google Scholar 

  43. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-381 elliptic curve. IACR TCHES 2019(4), 154–179 (2019). https://doi.org/10.13154/tches.v2019.i4.154-179

Download references

Acknowledgements

We thank Thomas Piellard and Olivier Bégassat for valuable discussions and feedback. We thank Gautam Botrel for helping with the Go implementation. We thank Diego Aranha, Julien Doget and Mike Scott for stimulating discussions on \(\mathbb G_T\) membership testing and subgroup security in \(\mathbb F_{q^k}\).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youssef El Housni or Aurore Guillevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Housni, Y., Guillevic, A. (2022). Families of SNARK-Friendly 2-Chains of Elliptic Curves. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13276. Springer, Cham. https://doi.org/10.1007/978-3-031-07085-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07085-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07084-6

  • Online ISBN: 978-3-031-07085-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics