Abstract
At CANS’20, El Housni and Guillevic introduced a new 2-chain of pairing-friendly elliptic curves for recursive zero-knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) made of the former BLS12-377 curve (a Barreto–Lynn–Scott curve over a 377-bit prime field) and the new BW6-761 curve (a Brezing–Weng curve of embedding degree 6 over a 761-bit prime field). First we generalise the curve construction, the pairing formulas (\(e :\mathbb G_1 \times \mathbb G_2 \rightarrow \mathbb G_T\)) and the group operations to any BW6 curve defined on top of any BLS12 curve, forming a family of 2-chain pairing-friendly curves.
Second, we investigate other possible 2-chain families made on top of the BLS12 and BLS24 curves. We compare BW6 to Cocks–Pinch curves of higher embedding degrees 8 and 12 (CP8, CP12) at the 128-bit security level. We derive formulas for efficient optimal ate and optimal Tate pairings on our new CP curves. We show that for both BLS12 and BLS24, the BW6 construction always gives the fastest pairing and curve arithmetic compared to Cocks-Pinch curves. Finally, we suggest a short list of curves suitable for Groth16 and KZG-based universal SNARKs and present an optimized implementation of these curves. Based on Groth16 and PlonK (a KZG-based SNARK) implementations in the gnark ecosystem, we obtain that the BLS12-377/BW6-761 pair is optimized for the former while the BLS24-315/BW6-672 pair is optimized for the latter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
SageMath code available at https://gitlab.inria.fr/tnfs-alpha/alpha.
References
Aranha, D.F., Barreto, P.S.L.M., Longa, P., Ricardini, J.E.: The realm of the pairings. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 3–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_1
Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_5
Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryptol. 32(4), 1298–1336 (2019). https://doi.org/10.1007/s00145-018-9280-5
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_19
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_16
Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery identification. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 454–473. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_26
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012. https://doi.org/10.1145/2090236.2090263
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488623
Botrel, G., Piellard, T., Housni, Y.E., Kubjas, I., Tabaie, A.: Consensys/gnark: v0.6.0, January 2022. https://doi.org/10.5281/zenodo.5819105
Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling decentralized private computation. In: 2020 IEEE Symposium on Security and Privacy, pp. 947–964. IEEE Computer Society Press, May 2020. https://doi.org/10.1109/SP40000.2020.00050
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 224–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_14
De Micheli, G., Gaudry, P., Pierrot, C.: Lattice enumeration for tower NFS: a 521-bit discrete logarithm computation. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 67–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_3
El Housni, Y.: A fork of gnark-crypto: Golang library for finite fields, fft, and elliptic curves (2021). https://github.com/yelhousni/gnark-crypto
El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 259–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5_13
El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves. ePrint 2021/1359 (2021)
El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves (2021). MIT License. https://gitlab.inria.fr/zk-curves/snark-2-chains
Fotiadis, G., Konstantinou, E.: TNFS resistant families of pairing-friendly elliptic curves. Theor. Comput. Sci. 800, 73–89 (2019). https://doi.org/10.1016/j.tcs.2019.10.017
Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23(2), 224–280 (2010). https://doi.org/10.1007/s00145-009-9048-z
Gabizon, A., Williamson, Z.J.: plookup: a simplified polynomial protocol for lookup tables. ePrint 2020/315 (2020)
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. ePrint 2019/953 (2019)
Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_30
Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 209–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_13
Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: a new hash function for zero-knowledge proof systems. In: USENIX Security Symposium (2021)
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 535–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_19
Guillevic, A., Masson, S., Thomé, E.: Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation. Des. Codes Cryptogr. 88, 1047–1081 (2020). https://doi.org/10.1007/s10623-020-00727-w
Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number field sieve algorithm. Math. Cryptol. 1(1), 1–39 (2021). https://journals.flvc.org/mathcryptology/article/view/125142
Hayashida, D., Hayasaka, K., Teruya, T.: Efficient final exponentiation via cyclotomic structure for pairings over families of elliptic curves. ePrint 2020/875 (2020)
Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf. Theory 52(10), 4595–4602 (2006). https://doi.org/10.1109/TIT.2006.881709
Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281), 555–579 (2013). https://doi.org/10.1090/S0025-5718-2012-02625-1
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.org/10.1145/129712.129782
Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_20
Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Computer Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746
Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Comb. Theory Ser. A 46(2), 183–211 (1987). https://doi.org/10.1016/0097-3165(87)90003-3
Scott, M.: A note on group membership tests for \(\mathbb{G}_1\), \(\mathbb{G}_2\) and \(\mathbb{G}_{T}\) on BLS pairing-friendly curves. ePrint 2021/1130 (2021)
Scott, M.: Pairing implementation revisited. ePrint 2019/077 (2019)
Scott, M.: Unbalancing pairing-based key exchange protocols. ePrint 2013/688 (2013)
Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Springer, Dordrecht (2009). https://doi.org/10.1007/978-0-387-09494-6
Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1
Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010). https://doi.org/10.1109/TIT.2009.2034881
Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-381 elliptic curve. IACR TCHES 2019(4), 154–179 (2019). https://doi.org/10.13154/tches.v2019.i4.154-179
Acknowledgements
We thank Thomas Piellard and Olivier Bégassat for valuable discussions and feedback. We thank Gautam Botrel for helping with the Go implementation. We thank Diego Aranha, Julien Doget and Mike Scott for stimulating discussions on \(\mathbb G_T\) membership testing and subgroup security in \(\mathbb F_{q^k}\).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
El Housni, Y., Guillevic, A. (2022). Families of SNARK-Friendly 2-Chains of Elliptic Curves. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13276. Springer, Cham. https://doi.org/10.1007/978-3-031-07085-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-07085-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07084-6
Online ISBN: 978-3-031-07085-3
eBook Packages: Computer ScienceComputer Science (R0)