Abstract
We build the first construction of a partially oblivious pseudorandom function (POPRF) that does not rely on bilinear pairings. Our construction can be viewed as combining elements of the 2HashDH OPRF of Jarecki, Kiayias, and Krawczyk with the Dodis-Yampolskiy PRF. We analyze our POPRF’s security in the random oracle model via reduction to a new one-more gap strong Diffie-Hellman inversion assumption. The most significant technical challenge is establishing confidence in the new assumption, which requires new proof techniques that enable us to show that its hardness is implied by the q-DL assumption in the algebraic group model.
Our new construction is as fast as the current, standards-track OPRF 2HashDH protocol, yet provides a new degree of flexibility useful in a variety of applications. We show how POPRFs can be used to prevent token hoarding attacks against Privacy Pass, reduce key management complexity in the OPAQUE password authenticated key exchange protocol, and ensure stronger security for password breach alerting services.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\mathsf {P}\) is an arbitrary ideal primitive.
- 2.
We ignore the \(\textsc {SDDH}\) oracle in this discussion, and it will be easy to handle in the actual proof via the \(\textsc {Decide}\) oracle.
- 3.
By “span” we mean the set of rational functions that can be obtained by taking affine combinations of the functions in \(\tau \).
- 4.
Define \(x = (\textit{sk} + \mathsf {H}_3(t))^{-1}\) for some fixed t. Then, the attacker can just obtain, via consecutive iterative queries, the values \(g^x, g^{x^2}, \ldots , g^{x^{q}}\), and then recover x via Cheon’s attack. Finally, \(\textit{sk} = x^{-1}-\mathsf {H}_3(t)\).
References
Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034851
Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_17
Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_5
Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003)
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25
Bellovin, S., Merritt, M.: Augmented encrypted key exchange: a password based protocol secure against dictionary attacks and password file compromise. In: CCS, pp. 244–250. ACM (1993)
Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_2
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3
Camenisch, J.: Group signature schemes and payment systems based on the discrete logarithm problem. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (1998)
Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4
Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8
Celi, S., Davidson, A., Faz-Hernández, A.: Privacy Pass Protocol Specification. Internet-Draft draft-ietf-privacypass-protocol-00, Internet Engineering Task Force, January 2021. https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-00. Work in Progress
Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic macs and keyed-verification anonymous credentials. In: CCS, pp. 1205–1216. ACM (2014)
Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and anonymous credentials supporting efficient verifiable encryption. In: CCS, pp. 1445–1459. ACM (2020)
Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7
Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_1
Davidson, A., Faz-Hernández, A., Sullivan, N., Wood, C.A.: Oblivious Pseudorandom Functions (OPRFs) using Prime-Order Groups. Internet-Draft draft-irtf-cfrg-voprf-05, Internet Engineering Task Force, November 2020. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-05. Work in Progress
Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass: bypassing internet challenges anonymously. Proc. Priv. Enhancing Technol. 2018(3), 164–180 (2018)
Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_28
Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia PRF service. In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 547–562. USENIX Association (2015). https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
Faz-Hernández, A., Kwiatkowski, K.: Introducing CIRCL: An Advanced Cryptographic Library. Cloudflare, June 2019. https://github.com/cloudflare/circl
Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4
Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2
Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_3
Huang, S., et al.: PrivateStats: De-Identified Authenticated Logging at Scale, January 2021. https://research.fb.com/wp-content/uploads/2021/01/PrivateStats-De-Identified-Authenticated-Logging-at-Scale_final.pdf
Jaeger, J., Tyagi, N.: Handling adaptive compromise for practical encryption schemes. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 3–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_1
Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_13
Jarecki, S., Krawczyk, H., Resch, J.K.: Threshold partially-oblivious PRFs with applications to key management. IACR Cryptology ePrint Archive, p. 733 (2018)
Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_15
Jarecki, S., Krawczyk, H., Xu, J.: On the (in)security of the Diffie-Hellman oblivious PRF with multiplicative blinding. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 380–409. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_14
Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_34
Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_19
Krawczyk, H., Lewi, K., Wood, C.A.: The OPAQUE Asymmetric PAKE Protocol. Internet-Draft draft-irtf-cfrg-opaque-02, Internet Engineering Task Force, February 2021. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-02. Work in Progress
Kreuter, B., Lepoint, T., Orrù, M., Raykova, M.: Anonymous tokens with private metadata bit. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 308–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_11
Li, L., Pal, B., Ali, J., Sullivan, N., Chatterjee, R., Ristenpart, T.: Protocols for checking compromised credentials. In: CCS, pp. 1387–1403. ACM (2019)
Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_1
Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security for private intersection-sum with cardinality. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_1
Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: FOCS, pp. 458–467. IEEE Computer Society (1997)
Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18
Silde, T., Strand, M.: Anonymous tokens with public metadata and applications to private contact tracing. IACR Cryptol. ePrint Arch. 2021, 203 (2021)
Thomas, K., et al.: Protecting accounts from credential stuffing with password breach alerting. In: USENIX Security Symposium, pp. 1556–1571. USENIX Association (2019)
Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A.: A fast and simple partially oblivious PRF, with applications. IACR Cryptology ePrint Archive, p. 864 (2021)
de Valence, H., Grigg, J., Tankersley, G., Valsorda, F., Lovecruft, I., Hamburg, M.: The ristretto255 and decaf448 Groups. Internet-Draft draft-irtf-cfrg-ristretto255-decaf448-00, Internet Engineering Task Force, October 2020. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-00. Work in Progress
Wilander, J., Taubeneck, E., Knox, A., Wood, C.: Consider using blinded signatures for fraud prevention - Private Click Measurement (2020). https://github.com/privacycg/private-click-measurement/issues/41
Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7_14
Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_20
Acknowledgments
The authors would like to thank Tjerand Silde, Martin Strand, and Tancrede Lepoint for helpful discussions on early versions of this work. This work was supported in part by NSF grants CNS-1930117 (CAREER), CNS-1926324, CNS-2026774, CNS-2120651, a Sloan Research Fellowship, a JP Morgan Faculty Award, and a Facebook PhD Fellowship.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A. (2022). A Fast and Simple Partially Oblivious PRF, with Applications. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13276. Springer, Cham. https://doi.org/10.1007/978-3-031-07085-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-07085-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07084-6
Online ISBN: 978-3-031-07085-3
eBook Packages: Computer ScienceComputer Science (R0)