Skip to main content

A Fast and Simple Partially Oblivious PRF, with Applications

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Abstract

We build the first construction of a partially oblivious pseudorandom function (POPRF) that does not rely on bilinear pairings. Our construction can be viewed as combining elements of the 2HashDH OPRF of Jarecki, Kiayias, and Krawczyk with the Dodis-Yampolskiy PRF. We analyze our POPRF’s security in the random oracle model via reduction to a new one-more gap strong Diffie-Hellman inversion assumption. The most significant technical challenge is establishing confidence in the new assumption, which requires new proof techniques that enable us to show that its hardness is implied by the q-DL assumption in the algebraic group model.

Our new construction is as fast as the current, standards-track OPRF 2HashDH protocol, yet provides a new degree of flexibility useful in a variety of applications. We show how POPRFs can be used to prevent token hoarding attacks against Privacy Pass, reduce key management complexity in the OPAQUE password authenticated key exchange protocol, and ensure stronger security for password breach alerting services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathsf {P}\) is an arbitrary ideal primitive.

  2. 2.

    We ignore the \(\textsc {SDDH}\) oracle in this discussion, and it will be easy to handle in the actual proof via the \(\textsc {Decide}\) oracle.

  3. 3.

    By “span” we mean the set of rational functions that can be obtained by taking affine combinations of the functions in \(\tau \).

  4. 4.

    Define \(x = (\textit{sk} + \mathsf {H}_3(t))^{-1}\) for some fixed t. Then, the attacker can just obtain, via consecutive iterative queries, the values \(g^x, g^{x^2}, \ldots , g^{x^{q}}\), and then recover x via Cheon’s attack. Finally, \(\textit{sk} = x^{-1}-\mathsf {H}_3(t)\).

References

  1. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034851

    Chapter  Google Scholar 

  2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_17

    Chapter  Google Scholar 

  3. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_5

    Chapter  Google Scholar 

  4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  6. Bellovin, S., Merritt, M.: Augmented encrypted key exchange: a password based protocol secure against dictionary attacks and password file compromise. In: CCS, pp. 244–250. ACM (1993)

    Google Scholar 

  7. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_2

    Chapter  MATH  Google Scholar 

  8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  9. Camenisch, J.: Group signature schemes and payment systems based on the discrete logarithm problem. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (1998)

    Google Scholar 

  10. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    Chapter  Google Scholar 

  11. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8

    Chapter  Google Scholar 

  12. Celi, S., Davidson, A., Faz-Hernández, A.: Privacy Pass Protocol Specification. Internet-Draft draft-ietf-privacypass-protocol-00, Internet Engineering Task Force, January 2021. https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-00. Work in Progress

  13. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic macs and keyed-verification anonymous credentials. In: CCS, pp. 1205–1216. ACM (2014)

    Google Scholar 

  14. Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and anonymous credentials supporting efficient verifiable encryption. In: CCS, pp. 1445–1459. ACM (2020)

    Google Scholar 

  15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  16. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_1

    Chapter  Google Scholar 

  17. Davidson, A., Faz-Hernández, A., Sullivan, N., Wood, C.A.: Oblivious Pseudorandom Functions (OPRFs) using Prime-Order Groups. Internet-Draft draft-irtf-cfrg-voprf-05, Internet Engineering Task Force, November 2020. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-05. Work in Progress

  18. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass: bypassing internet challenges anonymously. Proc. Priv. Enhancing Technol. 2018(3), 164–180 (2018)

    Article  Google Scholar 

  19. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_28

    Chapter  Google Scholar 

  20. Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia PRF service. In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 547–562. USENIX Association (2015). https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh

  21. Faz-Hernández, A., Kwiatkowski, K.: Introducing CIRCL: An Advanced Cryptographic Library. Cloudflare, June 2019. https://github.com/cloudflare/circl

  22. Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4

    Chapter  Google Scholar 

  23. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17

    Chapter  Google Scholar 

  24. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  25. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_3

    Chapter  MATH  Google Scholar 

  26. Huang, S., et al.: PrivateStats: De-Identified Authenticated Logging at Scale, January 2021. https://research.fb.com/wp-content/uploads/2021/01/PrivateStats-De-Identified-Authenticated-Logging-at-Scale_final.pdf

  27. Jaeger, J., Tyagi, N.: Handling adaptive compromise for practical encryption schemes. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 3–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_1

    Chapter  Google Scholar 

  28. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_13

    Chapter  MATH  Google Scholar 

  29. Jarecki, S., Krawczyk, H., Resch, J.K.: Threshold partially-oblivious PRFs with applications to key management. IACR Cryptology ePrint Archive, p. 733 (2018)

    Google Scholar 

  30. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_15

    Chapter  Google Scholar 

  31. Jarecki, S., Krawczyk, H., Xu, J.: On the (in)security of the Diffie-Hellman oblivious PRF with multiplicative blinding. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 380–409. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_14

    Chapter  Google Scholar 

  32. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_34

    Chapter  MATH  Google Scholar 

  33. Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_19

    Chapter  Google Scholar 

  34. Krawczyk, H., Lewi, K., Wood, C.A.: The OPAQUE Asymmetric PAKE Protocol. Internet-Draft draft-irtf-cfrg-opaque-02, Internet Engineering Task Force, February 2021. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-02. Work in Progress

  35. Kreuter, B., Lepoint, T., Orrù, M., Raykova, M.: Anonymous tokens with private metadata bit. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 308–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_11

    Chapter  Google Scholar 

  36. Li, L., Pal, B., Ali, J., Sullivan, N., Chatterjee, R., Ristenpart, T.: Protocols for checking compromised credentials. In: CCS, pp. 1387–1403. ACM (2019)

    Google Scholar 

  37. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_1

    Chapter  MATH  Google Scholar 

  38. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security for private intersection-sum with cardinality. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_1

    Chapter  Google Scholar 

  39. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: FOCS, pp. 458–467. IEEE Computer Society (1997)

    Google Scholar 

  40. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

  41. Silde, T., Strand, M.: Anonymous tokens with public metadata and applications to private contact tracing. IACR Cryptol. ePrint Arch. 2021, 203 (2021)

    Google Scholar 

  42. Thomas, K., et al.: Protecting accounts from credential stuffing with password breach alerting. In: USENIX Security Symposium, pp. 1556–1571. USENIX Association (2019)

    Google Scholar 

  43. Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A.: A fast and simple partially oblivious PRF, with applications. IACR Cryptology ePrint Archive, p. 864 (2021)

    Google Scholar 

  44. de Valence, H., Grigg, J., Tankersley, G., Valsorda, F., Lovecruft, I., Hamburg, M.: The ristretto255 and decaf448 Groups. Internet-Draft draft-irtf-cfrg-ristretto255-decaf448-00, Internet Engineering Task Force, October 2020. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-00. Work in Progress

  45. Wilander, J., Taubeneck, E., Knox, A., Wood, C.: Consider using blinded signatures for fraud prevention - Private Click Measurement (2020). https://github.com/privacycg/private-click-measurement/issues/41

  46. Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7_14

    Chapter  Google Scholar 

  47. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_20

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tjerand Silde, Martin Strand, and Tancrede Lepoint for helpful discussions on early versions of this work. This work was supported in part by NSF grants CNS-1930117 (CAREER), CNS-1926324, CNS-2026774, CNS-2120651, a Sloan Research Fellowship, a JP Morgan Faculty Award, and a Facebook PhD Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nirvan Tyagi or Sofía Celi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A. (2022). A Fast and Simple Partially Oblivious PRF, with Applications. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13276. Springer, Cham. https://doi.org/10.1007/978-3-031-07085-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07085-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07084-6

  • Online ISBN: 978-3-031-07085-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics