Abstract
In this work, we study the communication complexity of secure multiparty computation under minimal assumptions in the presence of an adversary that can adaptively corrupt all parties eventually. Specifically, we are interested in understanding the complexity when modeling the underlying function as a RAM program. Under minimal assumptions, the work of Canetti et al. (STOC 2017) and Benhamouda et al. (TCC 2018) give protocols whose communication complexity grows quadratically in the circuit size when the computation is expressed as a Boolean circuit. In this work, we obtain the first two-round two-party computation protocol, which is secure against adaptive adversaries who can adaptively corrupt all parties where the communication complexity is proportional to the square of the RAM complexity of the function up to polylogarithmic factors assuming the existence of non-committing encryption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Indeed, in this case the static simulator obtains the inputs of all parties in the protocol and thus can simulate the execution by simply running the protocol.
- 2.
We remark that to obtain our result, it sufficient to obtain a circuit-efficient adaptive zero-knowledge proof.
- 3.
In a RAM program, a step circuit performs CPU computations at a particular time step.
- 4.
We adopt the definition of ORAM from [10].
- 5.
Note that for simplicity we only specify the leaf nodes accessed by \(P'^{D'}(x)\) instead of specifying each node accessed along the path from the root to the leaf.
- 6.
We note that the PRF-based scheme \((r, F_k(r) \oplus m)\) satisfies both the properties.
References
Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_10
Benhamouda, F., Lin, H., Polychroniadou, A., Venkitasubramaniam, M.: Two-round adaptively secure multiparty computation from standard assumptions. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 175–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_7
Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_15
Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_9
Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 639–648 (1996)
Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party computation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_22
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)
Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Better two-round adaptive multiparty computation. IACR Cryptology ePrint Archive 2016, 614 (2016). http://eprint.iacr.org/2016/614
Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Equivocating Yao: constant-round adaptively secure multiparty computation in the plain model. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 497–509 (2017)
Chung, K.M., Pass, R.: A simple oram. Technical report, CORNELL UNIV ITHACA NY (2013)
Cohen, R., Peikert, C.: On adaptively secure multiparty computation with a short CRS. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 129–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_7
Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear communication complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 30–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_2
Cook, S.A., Reckhow, R.A.: Time bounded random access machines. J. Comput. Syst. Sci. 7(4), 354–375 (1973)
Dachman-Soled, D., Katz, J., Rao, V.: Adaptively Secure, Universally Composable, Multiparty Computation in Constant Rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_23
Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM computation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 491–520. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_19
Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled ram. Cryptology ePrint Archive, Report 2015/307 (2015). https://eprint.iacr.org/2015/307
Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled ram from one-way functions. Cryptology ePrint Archive, Report 2014/941 (2014). https://eprint.iacr.org/2014/941
Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_24
Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 105–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_8
Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_23
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)
Goyal, V.: Constant round non-malleable protocols using one way functions. In: STOC (2011)
Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party computation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 397–429. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_14
Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 521–553. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_20
Ishai, Y., Kumarasubramanian, A., Orlandi, C., Sahai, A.: On invertible sampling and adaptive security. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 466–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_27
Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: STOC (2011)
Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure oblivious transfer. J. Cryptol. 24(4), 761–799 (2011)
Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_42
Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM (JACM) 26(2), 361–381 (1979)
Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)
Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)
Acknowledgments
Work of Rafail Ostrovsky was supported by NSF award #2001096, US-Israel BSF grant 2015782, a Google Faculty Award, a JP Morgan Faculty Award, an IBM Faculty Research Award, a Xerox Faculty Research Award, an OKAWA Foundation Research Award, a B. John Garrick Foundation Award, a Teradata Research Award, a Lockheed-Martin Research Award, and the Sunday Group.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Bangalore, L., Ostrovsky, R., Poburinnaya, O., Venkitasubramaniam, M. (2022). Adaptively Secure Computation for RAM Programs. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13276. Springer, Cham. https://doi.org/10.1007/978-3-031-07085-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-07085-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07084-6
Online ISBN: 978-3-031-07085-3
eBook Packages: Computer ScienceComputer Science (R0)