Skip to main content

Optimal Broadcast Encryption and CP-ABE from Evasive Lattice Assumptions

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13276))

Abstract

We present a new, simple candidate broadcast encryption scheme for N users with parameter size \(\textsf {poly}(\log N)\). We prove security of our scheme under a non-standard variant of the LWE assumption where the distinguisher additionally receives short Gaussian pre-images while avoiding zeroizing attacks. This yields the first candidate optimal broadcast encryption that is plausibly post-quantum secure, and enjoys a security reduction to a simple assumption. As a secondary contribution, we present a candidate ciphertext-policy attribute-based encryption (CP-ABE) scheme for circuits of a-priori bounded polynomial depth where the parameter size is independent of the circuit size, and prove security under an additional non-standard assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity of exposition and due to the sheer complexity and impracticality of the ensuing schemes, we ignore obfuscation-based broadcast in the rest of the introduction, deferring a comparison to Sect. 2.3.

  2. 2.

    Note that the error distribution \(\mathbf {e}\cdot \mathbf {B}^{-1}(\mathbf {P})\) in \(\mathbf {c}^*\) is different from the fresh Gaussian error \(\mathbf {e}''\). Differences in error distributions can make or break a scheme if \(\mathbf {c}^*\) has small norm, but we do not know attacks exploiting these differences when \(\mathbf {c}^*\) has large norm, as is the case here.

  3. 3.

    As a point of comparison, we have examples such as k-LWE [38] and inner product functional encryption [3] based on LWE where it is easy to obtain a few such equations, but the equations do not information-theoretically determine the secret values.

  4. 4.

    Security based on evasive LWE can be viewed as ruling out restricted adversaries that replaces \(\mathbf {s}\mathbf {B}+\mathbf {e}, \mathbf {B}^{-1}(\mathbf {P})\) with their product \(\mathbf {s}\mathbf {P}+\mathbf {e}''\) (with fresh noise) and ignoring \(\mathbf {B}^{-1}(\mathbf {P})\) thereafter. Viewed this way, evasive LWE can be seen as a partial analogue of the generic/algebraic group model used in group and pairing-based cryptography. Several works studied analogues of the generic group model for multi-linear maps [9, 30], but they were in the zeroizing regime.

  5. 5.

    That is, \(x_i+x_j\) corresponds to \(\mathbf {A}_i + \mathbf {A}_j\) and \(x_i \cdot x_j\) corresponds to \(\mathbf {A}_i \cdot \mathbf {A}_j\) instead of \(\mathbf {A}_i \cdot \mathbf {G}^{-1}(\mathbf {A}_j)\). More generally, we can represent a circuit f of depth d and size s as a polynomial comprising the sum of s monomials, each of total degree at most \(2^d\). Then, \(\mathbf {A}_f = f(\mathbf {A}_1,\ldots ,\mathbf {A}_\ell )\).

  6. 6.

    As explained in [12], “To support multiplication and addition of constants, we may assume that we have an extra 0-th input to the circuit that always carries the value 1.” That is, we will set \(\ell = \lceil \log N \rceil +1\) in our CP-ABE scheme.

References

  1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_7

    Chapter  Google Scholar 

  2. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_17

    Chapter  Google Scholar 

  3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  4. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps: attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_5

    Chapter  Google Scholar 

  5. Agrawal, S., Wichs, D., Yamada, S.: Optimal broadcast encryption from LWE and pairings in the standard model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 149–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_6

    Chapter  Google Scholar 

  6. Agrawal, S., Yamada, S.: CP-ABE for circuits (and more) in the symmetric key setting. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 117–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_5

    Chapter  Google Scholar 

  7. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 13–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_2

    Chapter  Google Scholar 

  8. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree pseudorandom generators (or: sum-of-squares meets program obfuscation). In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 649–679. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_21

    Chapter  Google Scholar 

  9. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: provable security against zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 544–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_20

    Chapter  MATH  Google Scholar 

  10. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society Press, May 2007

    Google Scholar 

  11. Beullens, W., Wee, H.: Obfuscating simple functionalities from knowledge assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 254–283. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_9

    Chapter  Google Scholar 

  12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

    Chapter  Google Scholar 

  13. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16

    Chapter  Google Scholar 

  14. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23

    Chapter  Google Scholar 

  15. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 211–220. ACM Press, October/November 2006

    Google Scholar 

  16. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_12

    Chapter  Google Scholar 

  17. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_27

    Chapter  Google Scholar 

  18. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_4

    Chapter  Google Scholar 

  19. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not necessary for iO: circular-secure LWE suffices. Cryptology ePrint Archive, Report 2020/1024 (2020)

    Google Scholar 

  20. Brakerski, Z., Vaikuntanathan, V.: Lattice-inspired broadcast encryption and succinct ciphertext-policy ABE. In: ITCS, pp. 28:1–28:20 (2022)

    Google Scholar 

  21. Canetti, R., Chen, Y.: Constraint-Hiding Constrained PRFs for NC\(^1\) from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_16

    Chapter  Google Scholar 

  22. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  23. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_20

    Chapter  Google Scholar 

  24. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_1

    Chapter  Google Scholar 

  25. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_21

    Chapter  Google Scholar 

  26. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_7

    Chapter  Google Scholar 

  27. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_40

    Chapter  Google Scholar 

  28. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1

    Chapter  Google Scholar 

  29. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

    Google Scholar 

  30. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_10

    Chapter  Google Scholar 

  31. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: STOC (2021)

    Google Scholar 

  32. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_20

    Chapter  Google Scholar 

  33. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_10

    Chapter  MATH  Google Scholar 

  34. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006. Available as Cryptology ePrint Archive Report 2006/309

    Google Scholar 

  35. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-obfuscation using graph-induced encoding. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 783–798. ACM Press, October/November 2017

    Google Scholar 

  36. Hopkins, S., Jain, A., Lin, H.: Counterexamples to new circular security assumptions underlying iO. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 673–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_23

    Chapter  Google Scholar 

  37. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020)

    Google Scholar 

  38. Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k-LWE and applications in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 315–334. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_18

    Chapter  MATH  Google Scholar 

  39. Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudorandom generators and applications to indistinguishability obfuscation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 119–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_5

    Chapter  MATH  Google Scholar 

  40. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_22

    Chapter  Google Scholar 

  41. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  42. Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-iO from evasive LWE. Manuscript (2022)

    Google Scholar 

  43. Wee, H.: Broadcast encryption with size \(N^{1/3}\) and more from k-lin. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 155–178. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_6

    Chapter  Google Scholar 

  44. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698, pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoeteck Wee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wee, H. (2022). Optimal Broadcast Encryption and CP-ABE from Evasive Lattice Assumptions. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13276. Springer, Cham. https://doi.org/10.1007/978-3-031-07085-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07085-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07084-6

  • Online ISBN: 978-3-031-07085-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics