Abstract
To create privacy-friendly software designs, architects need comprehensive knowledge of privacy-enhancing technologies (PETs) and their properties. Existing works that systemize PETs, however, are outdated or focus on comparison criteria rather than providing guidance for their practical selection. In this short paper we present an enhanced classification of PETs that is more application-oriented than previous proposals. It integrates existing criteria like the privacy protection goal, and also considers practical criteria like the functional context, a technology’s maturity, and its impact on various non-functional requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abay, N.C., Zhou, Y., Kantarcioglu, M., Thuraisingham, B., Sweeney, L.: Privacy preserving synthetic data release using deep learning. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 510–526. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_31
Al-Momani, A., et al.: Land of the lost: privacy patterns’ forgotten properties: enhancing selection-support for privacy patterns. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing, pp. 1217–1225 (2021)
Alshammari, M., Simpson, A.: Privacy architectural strategies: an approach for achieving various levels of privacy protection. In: Proceedings of the 2018 Workshop on Privacy in the Electronic Society, pp. 143–154 (2018)
Bab, K., et al.: Jiff (2021). GitHub repository. https://github.com/multiparty/jiff
Bloemen, R., Vienhage, P.: Openzkp (2020). GitHub repository. https://github.com/0xProject/OpenZKP
Bost, R.: Open symmetric searchable encryption (opensse) (2021). GitHub repository. https://github.com/OpenSSE
Centelles, A., Diehl, S.: 1-out-of-2 oblivious transfer (2020). GitHub repository. https://github.com/adjoint-io/oblivious-transfer
Claßen, P., Grabowski, K., Modras, K.: Anonymous credentials (2020). GitHub repository. https://github.com/whotracksme/anonymous-credentials
David, R., Sison, J., Vickery, J., Bundoo, K.A., Ahmed, S.: Sybil-E: LSB-steganography (2020). https://github.com/RobinDavid/LSB-Steganography
Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: LINDDUN: running example - social network 2.0. https://www.linddun.org/downloads. Accessed 14 Feb 2022
Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements. Requirements Eng. 16(1), 3–32 (2011)
European Union Agency for Cybersecurity (ENISA): Privacy and data protection by design (2015). https://www.enisa.europa.eu/publications/privacy-and-data-protection-by-design
European Union Agency for Cybersecurity (ENISA): Pets maturity assessment repository (2019). https://www.enisa.europa.eu/publications/enisa2019s-pets-maturity-assessment-repository
European Union Agency for Cybersecurity (ENISA): Pseudonymisation techniques and best practices-recommendations on shaping technology according to data protection and privacy provisions (2019). https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices
European Union Agency for Cybersecurity (ENISA)): Data protection engineering (2022). https://www.enisa.europa.eu/publications/data-protection-engineering
Colt Frederickson: recrypt (2022). GitHub repository. https://github.com/IronCoreLabs/recrypt-rs
Goldberg, I.: Off-the-record messaging. https://otr.cypherpunks.ca/
Google: Fully homomorphic encryption (FHE). GitHub repository. https://github.com/google/fully-homomorphic-encryption
Group, I.T.L.W.: Transport layer security. https://datatracker.ietf.org/wg/tls/charter/
Gürses, S., Troncoso, C., Diaz, C.: Engineering privacy by design. Comput. Priv. Data Prot. 14(3), 25 (2011)
Gürses, S., Troncoso, C., Diaz, C.: Engineering privacy by design reloaded. In: Amsterdam Privacy Conference, pp. 1–21 (2015)
Hansen, M., Jensen, M., Rost, M.: Protection goals for privacy engineering. In: 2015 IEEE Security and Privacy Workshops, pp. 159–166. IEEE (2015)
Heurix, J., Zimmermann, P., Neubauer, T., Fenz, S.: A taxonomy for privacy enhancing technologies. Comput. Secur. 53, 1–17 (2015)
Hundepool, A., et al.: Statistical Disclosure Control, vol. 2. Wiley, New York (2012)
IBM: libgroupsig (2021). GitHub repository. https://github.com/IBM/libgroupsig
Intel: Intel SGX. https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
Johnson, N., Near, J.P., Hellerstein, J.M., Song, D.: Chorus: a programming framework for building scalable differential privacy mechanisms. In: 2020 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 535–551. IEEE (2020)
Kunz, I., Banse, C., Stephanow, P.: Selecting privacy enhancing technologies for IoT-based services. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N. (eds.) SecureComm 2020. LNICST, vol. 336, pp. 455–474. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63095-9_29
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115. IEEE (2007)
Liones, E., Langille, D.: Muchpir demo (2021). GitHub repository. https://github.com/ReverseControl/MuchPIR
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discovery from Data (TKDD) 1(1), 3-es (2007)
Mivule, K.: Utilizing noise addition for data privacy, an overview. arXiv preprint arXiv:1309.3958 (2013)
NASA: Technology readiness level definitions. https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level
Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization: anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management (2010)
Prasser, F., Kohlmayer, F., Babioch, K., Vujosevic, I., Bild, R.: Arx data anonymization tool. https://arx.deidentifier.org/
Rubio, J.E., Alcaraz, C., Lopez, J.: Selecting privacy solutions to prioritise control in smart metering systems. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 176–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7_15
Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Software Eng. 35(1), 67–82 (2008)
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)
The TensorFlow Federated Authors: TensorFlow Federated (2018). GitHub repository. https://github.com/tensorflow/federated
The TOR Project: Tor browser. https://www.torproject.org/
Unknown authors: Openabe (2021). GitHub repository. https://github.com/zeutro/openabe
Unknown Authors: Python implementation of post-randomisation method for disclosure control (2021). https://github.com/JiscDACT/pram
Unknown authors: Differential privacy (2022). GitHub repository. https://github.com/google/differential-privacy
Wagner, I., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Comput. Surv. (CSUR) 51(3), 1–38 (2018)
Wagner, I., Yevseyeva, I.: Designing strong privacy metrics suites using evolutionary optimization. ACM Trans. Privacy Secur. (TOPS) 24(2), 1–35 (2021)
Wu, Z., Li, G., Shen, S., Lian, X., Chen, E., Xu, G.: Constructing dummy query sequences to protect location privacy and query privacy in location-based services. World Wide Web 24(1), 25–49 (2020). https://doi.org/10.1007/s11280-020-00830-x
Wuyts, K., Van Landuyt, D., Sions, L., Wouter, J.: LINDDUN: mitigation strategies and solutions. https://www.linddun.org/mitigation-strategies-and-solutions. Accessed 30 July 2021
Acknowledgements
We thank our colleagues Martin Schanzenbach, Georg Bramm, and Mark Gall who provided their domain expertise on many privacy-enhancing technologies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Kunz, I., Binder, A. (2022). Application-Oriented Selection of Privacy Enhancing Technologies. In: Gryszczyńska, A., Polański, P., Gruschka, N., Rannenberg, K., Adamczyk, M. (eds) Privacy Technologies and Policy. APF 2022. Lecture Notes in Computer Science(), vol 13279. Springer, Cham. https://doi.org/10.1007/978-3-031-07315-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-07315-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07314-4
Online ISBN: 978-3-031-07315-1
eBook Packages: Computer ScienceComputer Science (R0)