Skip to main content

Updating Prediction Models for Predictive Process Monitoring

  • Conference paper
  • First Online:
Book cover Advanced Information Systems Engineering (CAiSE 2022)

Abstract

Predictive monitoring is a key activity in some Process-Aware Information Systems (PAIS) such as information systems for operational management support. Unforeseen circumstances like COVID can introduce changes in human behaviour, processes, or computing resources, which lead the owner of the process or information system to consider whether the quality of the predictions made by the system (e.g., mean time to solution) is still good enough, and if not, which amount of data and how often the system should be trained to maintain the quality of the predictions. To answer these questions, we propose, compare, and evaluate different strategies for selecting the amount of information required to update the predictive model in a context of offline learning. We performed an empirical evaluation using three real-world datasets that span between 2 and 13 years to validate the different strategies which show a significant enhancement in the prediction accuracy with respect to a non-update strategy.

Work funded by grants RTI2018-101204-B-C21 and RTI2018-101204-B-C22 funded by MCIN/ AEI/ 10.13039/501100011033/ and ERDF A way of making Europe; grant P18-FR-2895 and US-1381595 funded by Junta de Andalucía/ERDF, UE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/isa-group/predictive-monitoring-evolution.

References

  1. del Río-Ortega, A., Resinas, M., Durán, A., Bernárdez, B., Ruiz-Cortés, A., Toro, M.: Visual PPINOT: a graphical notation for process performance indicators. Bus. Inf. Syst. Eng. 61, 137–161 (2019)

    Article  Google Scholar 

  2. Márquez-Chamorro, A., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2017)

    Article  Google Scholar 

  3. Márquez-Chamorro, A.E., Revoredo, K., Resinas, M., Del-Río-Ortega, A., Santoro, F.M., Ruiz-Cortés, A.: Context-aware process performance indicator prediction. IEEE Access 8, 222050–222063 (2020)

    Article  Google Scholar 

  4. Polato, M., Sperduti, A., Burattin, A., Leoni, M.: Time and activity sequence prediction of business process instances. Computing 100(9), 1005–1031 (2018). https://doi.org/10.1007/s00607-018-0593-x

    Article  MathSciNet  Google Scholar 

  5. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inform. Syst. 56, 235–257 (2016)

    Article  Google Scholar 

  6. Verenich, I., Nguyen, H., La Rosa, M., Dumas, M.: White-box prediction of process performance indicators via flow analysis. In: ICSSP 2017, pp. 85–94 (2017)

    Google Scholar 

  7. Teinemaa, I., Dumas, M., La Rosa, M., Maggi, F.: Outcome-oriented predictive process monitoring: Review and benchmark. CoRR abs/1707.06766 (2017)

    Google Scholar 

  8. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18

  9. Baier, L., Reimold, J., Kühl, N.: Handling concept drift for predictions in business process mining. In: CBI 2020, vol. 1, pp. 76–83 (2020)

    Google Scholar 

  10. Baier, L., Kellner, V., Kühl, N., Satzger, G.: Switching scheme: a novel approach for handling incremental concept drift in real-world data sets. In: HICSS-54 (2021)

    Google Scholar 

  11. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)

    Article  Google Scholar 

  12. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)

    Article  Google Scholar 

  13. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  14. Verenich, I., Dumas, M., La Rosa, M., Maggi, F., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. arXiv:1805.02896 (2018)

  15. Van Dongen, B.: Bpi challenge 2015. tu delft. dataset. 10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1 (2015)

    Google Scholar 

  16. De Leoni, M., Mannhardt, F.: Road traffic fine management process. Eindhoven university of technology. Dataset. https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5 (2015)

  17. Powers, D.: Evaluation: From precision, recall and F-Factor to ROC, informedness, markedness & correlation. Mach. Learn. Technol. 2 (2008)

    Google Scholar 

  18. Bose, R., Aalst, W., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift in process mining. In: CAISE 2011, pp. 391–405 (2011)

    Google Scholar 

  19. Guajardo, J., Weber, R., Miranda, J.: A model updating strategy for predicting time series with seasonal patterns. Appl. Soft Comput. 10(1), 276–283 (2010)

    Article  Google Scholar 

  20. Bose, R., Aalst, W., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2014)

    Article  Google Scholar 

  21. Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process monitoring. In: SCC 2017, pp. 1–8 (2017)

    Google Scholar 

  22. Firouzian, I., Zahedi, M., Hassanpour, H.: Investigation of the effect of concept drift on data-aware remaining time prediction of business processes. Int. J. Nonlinear Anal. Appl. 10(2), 153–166 (2019)

    Google Scholar 

  23. Elkhawaga, G., Abuelkheir, M., Barakat, S., Riad, A., Reichert, M.: CONDA-PM-a systematic review and framework for concept drift analysis in process mining. Algorithms 13(7), 161 (2020)

    Article  Google Scholar 

  24. Francescomarino, C.D., Ghidini, C., Maggi, F.M., Rizzi, W., Persia, C.D.: Incremental predictive process monitoring: how to deal with the variability of real environments. arXiv:1804.03967v1, p. 1 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso E. Márquez-Chamorro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Márquez-Chamorro, A.E., Nepomuceno-Chamorro, I.A., Resinas, M., Ruiz-Cortés, A. (2022). Updating Prediction Models for Predictive Process Monitoring. In: Franch, X., Poels, G., Gailly, F., Snoeck, M. (eds) Advanced Information Systems Engineering. CAiSE 2022. Lecture Notes in Computer Science, vol 13295. Springer, Cham. https://doi.org/10.1007/978-3-031-07472-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07472-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07471-4

  • Online ISBN: 978-3-031-07472-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics