Skip to main content

Inferring a Multi-perspective Likelihood Graph from Black-Box Next Event Predictors

  • Conference paper
  • First Online:
Book cover Advanced Information Systems Engineering (CAiSE 2022)

Abstract

Deep learning models for next event prediction in predictive process monitoring have shown significant performance improvements over conventional methods. However, they are often criticized for being black-box models. Without allowing analysts to understand what such models have learned, it is difficult to establish trust in their abilities.

In this work, we propose a technique to infer a likelihood graph from a next event predictor (NEP) to capture and visualize its behavior. Our approach first generates complete cases, including event attributes, using the NEP. From this set of cases, a multi-perspective likelihood graph is inferred. Including event attributes in the graph allows analysts to better understand the learned decision and branching points of the process.

The results of the evaluation show that inferred graphs generalize beyond the event log, achieve high F-scores, and small likelihood deviations. We conclude black-box NEP can be used to generate conforming cases even for noisy event logs. As a result, our visualization technique, which represents exactly this set of cases, shows what the NEP has learned, thus mitigating one of their biggest criticisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/yannikgerlach/likelihood-graphs-from-neps.

  2. 2.

    van Dongen, Boudewijn (2020): BPI Challenge 2020. 4TU.ResearchData. Collection. https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.

References

  1. Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  2. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19

    Chapter  Google Scholar 

  3. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  4. Gal, A., Senderovich, A.: Process minding: closing the big data gap. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 3–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_1

    Chapter  Google Scholar 

  5. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable predictive process monitoring. In: International Conference on Process Mining (2020)

    Google Scholar 

  6. Mehdiyev, N., Evermann, J., Fettke, P.: A novel business process prediction model using a deep learning method. Bus. Inf. Syst. Eng. 62(2), 143–157 (2018). https://doi.org/10.1007/s12599-018-0551-3

    Article  Google Scholar 

  7. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: BINet: multi-perspective business process anomaly classification. In: Information Systems (2019)

    Google Scholar 

  8. Nolle, T., Seeliger, A., Mühlhäuser, M.: BINet: multivariate business process anomaly detection using deep learning. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 271–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_16

    Chapter  MATH  Google Scholar 

  9. Peeperkorn, J., Vanden Broucke, S.K.L.M., De Weerdt, J.: Can deep neural networks learn process model structure ? An assessment framework and analysis. In: International Workshop on Leveraging Machine Learning in Process Mining (2021)

    Google Scholar 

  10. Polyvyanyy, A., Moffat, A., García-Bañuelos, L.: An entropic relevance measure for stochastic conformance checking in process mining. In: International Conference on Process Mining, pp. 97–104 (2020)

    Google Scholar 

  11. Rehse, J.-R., Mehdiyev, N., Fettke, P.: Towards explainable process predictions for industry 4.0 in the DFKI-Smart-Lego-Factory. KI - Künstliche Intelligenz 33(2), 181–187 (2019). https://doi.org/10.1007/s13218-019-00586-1

    Article  Google Scholar 

  12. Rizzi, W., Di Francescomarino, C., Maggi, F.M.: Explainability in predictive process monitoring: when understanding helps improving. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 141–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_9

    Chapter  Google Scholar 

  13. Shunin, T., Zubkova, N., Shershakov, S.: Neural approach to the discovery problem in process mining. In: Analysis of Images, Social Networks and Texts, pp. 261–273 (2018)

    Google Scholar 

  14. Sindhgatta, R., Moreira, C., Ouyang, C., Barros, A.: Exploring interpretable predictive models for business processes. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 257–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_15

    Chapter  Google Scholar 

  15. Sindhgatta, R., Ouyang, C., Moreira, C., Liao, Y.: Interpreting predictive process monitoring benchmarks. arXiv (2019)

    Google Scholar 

  16. Sommers, D., Menkovski, V., Fahland, D.: Process discovery using graph neural networks. In: International Conference on Process Mining, pp. 40–47 (2021)

    Google Scholar 

  17. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  18. Tax, N., van Zelst, S.J., Teinemaa, I.: An experimental evaluation of the generalizing capabilities of process discovery techniques and black-box sequence models. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 165–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91704-7_11

    Chapter  Google Scholar 

  19. Theis, J., Darabi, H.: Decay replay mining to predict next process events. IEEE Access 7, 119787–119803 (2019)

    Article  Google Scholar 

  20. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  21. Verenich, I., Dumas, M., La Rosa, M., Nguyen, H.: Predicting process performance: a white-box approach based on process models. J. Softw. Evol. Process (2019)

    Google Scholar 

  22. Weinzierl, S., et al.: An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs. arXiv (2020)

    Google Scholar 

  23. Weinzierl, S., Zilker, S., Brunk, J., Revoredo, K., Matzner, M., Becker, J.: XNAP: making LSTM-based next activity predictions explainable by using LRP. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp. 129–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Seeliger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerlach, Y., Seeliger, A., Nolle, T., Mühlhäuser, M. (2022). Inferring a Multi-perspective Likelihood Graph from Black-Box Next Event Predictors. In: Franch, X., Poels, G., Gailly, F., Snoeck, M. (eds) Advanced Information Systems Engineering. CAiSE 2022. Lecture Notes in Computer Science, vol 13295. Springer, Cham. https://doi.org/10.1007/978-3-031-07472-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07472-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07471-4

  • Online ISBN: 978-3-031-07472-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics