Skip to main content

Towards Simplification of ME-Maps

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2022, EMMSAD 2022)

Abstract

As knowledge increases tremendously each and every day, there is a need for various means to manage and organize it, so to utilize it when needed. For example, for finding solutions to technical and engineering problems. An alternative for achieving these goals is through knowledge mapping that aims at indexing the knowledge. Recently, we devised an approach called ME-MAP for mapping out know-how, so to facilitate knowledge indexing. However, the challenge of handling large maps still exists. In this paper, we address this challenge by proposing a simplification mechanism for ME-maps. In particular, we define the meaning of simplification in ME-MAP, set simplification rules, and develop an algorithm for simplifying ME-maps. In addition, we confirm the correctness of the algorithm and its scalability, as well as its support for understanding domain maps through a preliminary user study.

This research was partially supported by the Israel Science Foundation (Grant No. 495/14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\xrightarrow {lnk}^+\) denotes a path of \(achieved-by~\)or \(consists-of~\)relationships.

  2. 2.

    Here we take a conservative approach, yet, the min function can be replaced by other functions.

References

  1. Abdulganiyyi, N., Ibrahim, N.: Semantic abstraction of class diagram using logical approach. In: 4th World Congress on Information and Communication Technologies, pp. 251–256. IEEE (2014)

    Google Scholar 

  2. Alencar, F., et al.: Towards modular i* models. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 292–297 (2010)

    Google Scholar 

  3. Campbell, L.J., Halpin, T.A., Proper, H.: Conceptual schemas with abstractions making flat conceptual schemas more comprehensible. Data Know. Eng. 20(1), 39–85 (1996)

    Article  Google Scholar 

  4. Carvalho, M.R., Hewett, R., Canas, A.J.: Enhancing web searches from concept map-based knowledge models. In: Fifth Multiconference on Systems, Cybernetics and Informatics, pp. 69–73 (2001)

    Google Scholar 

  5. Caughlin, D., Sisti, A.F.: Summary of model abstraction techniques. In: Enabling Technology for Simulation Science, vol. 3083, pp. 2–13 (1997)

    Google Scholar 

  6. Davenport, T., Prusak, L.: Working Knowledge: How Organizations Manage What they Know. Harvard Business Review Press, Boston (1998)

    Google Scholar 

  7. De Lara, J., Guerra, E., Cuadrado, J.: Reusable abstractions for modeling languages. Inf. Syst. 38(8), 1128–1149 (2013)

    Article  Google Scholar 

  8. Egyed, E.: Automated abstraction of class diagrams. ACM TOSEM 11(4), 449–491 (2002)

    Article  Google Scholar 

  9. Falke, T.G.I.: GraphDocExplore: a framework for the experimental comparison of graph-based document exploration techniques. In: Conference on Empirical Methods in NLP, pp. 19–24 (2017)

    Google Scholar 

  10. Franch, X.: Incorporating modules into the i* framework. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 439–454. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13094-6_34

    Chapter  Google Scholar 

  11. Guerra, E., de Lara, J., Malizia, A., Díaz, P.: Supporting user-oriented analysis for multi-view domain-specific visual languages. Inf. Soft. Tech. 51(4), 769–784 (2009)

    Article  Google Scholar 

  12. Guizzardi, G., Figueiredo, G., Hedblom, M.M., Poels, G.: Ontology-based model abstraction. In: 13th International Conference on Research Challenges in Information Science (RCIS), pp. 1–13. IEEE (2019)

    Google Scholar 

  13. Jaeschke, P., Oberweis, A., Stucky, W.: Extending ER model clustering by relationship clustering. In: Elmasri, R.A., Kouramajian, V., Thalheim, B. (eds.) ER 1993. LNCS, vol. 823, pp. 451–462. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0024387

    Chapter  Google Scholar 

  14. Jimenez-Pastor, A., Garmendia, A., de Lara, J.: Scalable model exploration for model-driven engineering. J. Syst. Softw. 132, 204–225 (2017)

    Article  Google Scholar 

  15. Khwaja, S., Alshayeb, M.: Survey on software design-pattern specification languages. ACM Comput. Surv. 49(1), 1–35 (2016)

    Article  Google Scholar 

  16. Lima, P., et al.: An extended systematic mapping study about the scalability of i* models. CLEI Electron. J. 19(3), 6:1–6:23 (2016)

    Google Scholar 

  17. Maraee, A., Sturm, A.: Reasoning methods for ME-maps-a CSP based approach. In: 12th Conference on Research Challenges in Information Science (RCIS), pp. 1–11 (2018)

    Google Scholar 

  18. Maraee, A., Sturm, A., Prokofiev, D.: MEMapReasoner (2019). https://bit.ly/2WOGGtL

  19. Maraee, A., Sturm, A.: ME-map simplification (2021). https://tinyurl.com/y7wdl2yc

  20. Menaouer, B., Nada, M.: The relationship between knowledge mapping and the open innovation process: the case of education system. Arti. Intell. Eng. Design Analy. Manuf. 34(1), 17–29 (2020)

    Article  Google Scholar 

  21. Moody, D.L., Flitman, A.: A methodology for clustering entity relationship models — a human information processing approach. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp. 114–130. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47866-3_8

    Chapter  Google Scholar 

  22. Nassour, J., Elhadad, M., Sturm, A., Yu, E.: Evaluating the comprehension of means-ends maps. Softw. Syst. Model. 18(3), 1885–1903 (2018)

    Article  Google Scholar 

  23. Polyvyanyy, A., Smirnov, S., Weske, M.: Business process model abstraction. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1. IHIS, pp. 147–165. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45100-3_7

    Chapter  Google Scholar 

  24. Sarewitz, D., Nelson, R.R.: Progress in know-how: its origins and limits. Innov. Technol. Gov. Glob. 3(1), 101–117 (2008)

    Google Scholar 

  25. Shoval, P., Danoch, R., Balaban, M.: Hierarchical entity-relationship diagrams: the model, method of creation and experimental evaluation. Req. Eng. 9(4), 217–228 (2004)

    Article  Google Scholar 

  26. Smirnov, S.: Business process model abstraction. Ph.D. thesis, Universitätsbibliothek der Universität Potsdam (2012)

    Google Scholar 

  27. Sturm, A.: Knowledge Map Tool (2017). http://khmap.ise.bgu.ac.il/map/

  28. Sturm, A., Gross, D., Wang, J., Yu, E.: Means-ends based know-how mapping. J. Knowl. Manag. 21(2), 454–473 (2017)

    Article  Google Scholar 

  29. Teorey, T., Wei, G., Bolton, D., Koenig, J.: ER model clustering as an aid for user communication and documentation in database design. Commun. ACM 32(8), 975–987 (1989)

    Article  Google Scholar 

  30. Villegas, A., Olivé, A.: A method for filtering large conceptual schemas. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 247–260. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16373-9_18

    Chapter  Google Scholar 

  31. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements Engineering. MIT Press, Cambridge (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azzam Maraee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maraee, A., Sturm, A. (2022). Towards Simplification of ME-Maps. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2022 2022. Lecture Notes in Business Information Processing, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-031-07475-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07475-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07474-5

  • Online ISBN: 978-3-031-07475-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics