Skip to main content

Detecting Context Activities in Event Logs

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2022, EMMSAD 2022)

Abstract

One of the most important goals for process models is to enable users to visualise the control-flow information of a process. Because some activities can happen at anytime during the execution of a process, the execution of these activities are not necessarily dependent on the control-flow information of the process. Such activities are called context activities. Acknowledging that context activities can affect the performance of any process discovery algorithms, such potentially useful information will be lost once they are discarded from the event logs. In this paper, we propose a method with the goal to automatically detect context activities in event logs. The detected context activities can then be further analysed to get deeper insights about the process after the process discovery stage. Both synthetic and real-life datasets are used for evaluation to show the capabilities of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/bearlu1996/context_activities.

  2. 2.

    https://doi.org/10.4121/uuid:ea90c4be-64b6-4f4b-b27c-10ede28da6b6.

  3. 3.

    Only the original event logs generated from artificial process models are used.

  4. 4.

    https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.

References

  1. Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  2. Van der Aalst, W.M.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  3. Van der Aalst, W.: On the representational bias in process mining. In: 2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 2–7 (2011). https://doi.org/10.1109/WETICE.2011.64

  4. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019). https://doi.org/10.1109/TKDE.2018.2841877

    Article  Google Scholar 

  5. Berti, A., Van Zelst, S.J., van der Aalst, W.: Process mining for python (PM4Py): bridging the gap between process-and data science. arXiv preprint arXiv:1905.06169 (2019)

  6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data - SIGMOD 2000, Dallas, Texas, United States, pp. 93–104. ACM Press (2000). https://doi.org/10.1145/342009.335388

  7. De Koninck, P., vanden Broucke, S., De Weerdt, J.: act2vec, trace2vec, log2vec, and model2vec: representation learning for business processes. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 305–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_18

    Chapter  Google Scholar 

  8. De Medeiros, A.A., van Dongen, B.F., Van der Aalst, W.M., Weijters, A.: Process mining: extending the \(\alpha \)-algorithm to mine short loops (2004)

    Google Scholar 

  9. Dees, M., Hompes, B., van der Aalst, W.M.: Events put into context (EPiC). In: 2020 2nd International Conference on Process Mining (ICPM), pp. 65–72. IEEE (2020)

    Google Scholar 

  10. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of Business Process Management, vol. 1. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5

    Book  Google Scholar 

  11. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  12. Guo, Q., Wen, L., Wang, J., Yan, Z., Yu, P.S.: Mining invisible tasks in non-free-choice constructs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 109–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_7

    Chapter  Google Scholar 

  13. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, Bejing, China, vol. 32, pp. 1188–1196. PMLR (2014)

    Google Scholar 

  14. Leemans, M., van der Aalst, W.M.P.: Modeling and discovering cancelation behavior. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 93–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_8

    Chapter  Google Scholar 

  15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17

    Chapter  Google Scholar 

  16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6

    Chapter  Google Scholar 

  17. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Handling duplicated tasks in process discovery by refining event labels. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 90–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_6

    Chapter  Google Scholar 

  18. Lu, Y., Chen, Q., Poon, S.: A novel approach to discover switch behaviours in process mining. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 57–68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_5

    Chapter  Google Scholar 

  19. Mandal, S., Hewelt, M., Weske, M.: A framework for integrating real-world events and business processes in an IoT environment. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 194–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_13

    Chapter  Google Scholar 

  20. Marin-Castro, H.M., Tello-Leal, E.: Event log preprocessing for process mining: a review. Appl. Sci. 11(22), 10556 (2021). https://doi.org/10.3390/app112210556

    Article  Google Scholar 

  21. Tax, N., Sidorova, N., van der Aalst, W.M.P.: Discovering more precise process models from event logs by filtering out chaotic activities. J. Intell. Inf. Syst. 52(1), 107–139 (2018). https://doi.org/10.1007/s10844-018-0507-6

    Article  Google Scholar 

  22. Wen, L., Wang, J., van der Aalst, W.M., Huang, B., Sun, J.: Mining process models with prime invisible tasks. Data Knowl. Eng. 69(10), 999–1021 (2010)

    Article  Google Scholar 

  23. Zandkarimi, F., Rehse, J.R., Soudmand, P., Hoehle, H.: A generic framework for trace clustering in process mining. In: 2020 2nd International Conference on Process Mining (ICPM), pp. 177–184 (2020). https://doi.org/10.1109/ICPM49681.2020.00034

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Chen, Q., Poon, S.K. (2022). Detecting Context Activities in Event Logs. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2022 2022. Lecture Notes in Business Information Processing, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-031-07475-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07475-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07474-5

  • Online ISBN: 978-3-031-07475-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics