Abstract
One of the most important goals for process models is to enable users to visualise the control-flow information of a process. Because some activities can happen at anytime during the execution of a process, the execution of these activities are not necessarily dependent on the control-flow information of the process. Such activities are called context activities. Acknowledging that context activities can affect the performance of any process discovery algorithms, such potentially useful information will be lost once they are discarded from the event logs. In this paper, we propose a method with the goal to automatically detect context activities in event logs. The detected context activities can then be further analysed to get deeper insights about the process after the process discovery stage. Both synthetic and real-life datasets are used for evaluation to show the capabilities of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
Only the original event logs generated from artificial process models are used.
- 4.
References
Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128ā1142 (2004)
Van der Aalst, W.M.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Van der Aalst, W.: On the representational bias in process mining. In: 2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 2ā7 (2011). https://doi.org/10.1109/WETICE.2011.64
Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686ā705 (2019). https://doi.org/10.1109/TKDE.2018.2841877
Berti, A., Van Zelst, S.J., van der Aalst, W.: Process mining for python (PM4Py): bridging the gap between process-and data science. arXiv preprint arXiv:1905.06169 (2019)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data - SIGMOD 2000, Dallas, Texas, United States, pp. 93ā104. ACM Press (2000). https://doi.org/10.1145/342009.335388
De Koninck, P., vanden Broucke, S., De Weerdt, J.: act2vec, trace2vec, log2vec, and model2vec: representation learning for business processes. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 305ā321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_18
De Medeiros, A.A., van Dongen, B.F., Van der Aalst, W.M., Weijters, A.: Process mining: extending the \(\alpha \)-algorithm to mine short loops (2004)
Dees, M., Hompes, B., van der Aalst, W.M.: Events put into context (EPiC). In: 2020 2nd International Conference on Process Mining (ICPM), pp. 65ā72. IEEE (2020)
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of Business Process Management, vol. 1. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226ā231 (1996)
Guo, Q., Wen, L., Wang, J., Yan, Z., Yu, P.S.: Mining invisible tasks in non-free-choice constructs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 109ā125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_7
Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, Bejing, China, vol. 32, pp. 1188ā1196. PMLR (2014)
Leemans, M., van der Aalst, W.M.P.: Modeling and discovering cancelation behavior. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 93ā113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_8
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311ā329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66ā78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_6
Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Handling duplicated tasks in process discovery by refining event labels. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 90ā107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_6
Lu, Y., Chen, Q., Poon, S.: A novel approach to discover switch behaviours in process mining. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 57ā68. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_5
Mandal, S., Hewelt, M., Weske, M.: A framework for integrating real-world events and business processes in an IoT environment. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 194ā212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_13
Marin-Castro, H.M., Tello-Leal, E.: Event log preprocessing for process mining: a review. Appl. Sci. 11(22), 10556 (2021). https://doi.org/10.3390/app112210556
Tax, N., Sidorova, N., van der Aalst, W.M.P.: Discovering more precise process models from event logs by filtering out chaotic activities. J. Intell. Inf. Syst. 52(1), 107ā139 (2018). https://doi.org/10.1007/s10844-018-0507-6
Wen, L., Wang, J., van der Aalst, W.M., Huang, B., Sun, J.: Mining process models with prime invisible tasks. Data Knowl. Eng. 69(10), 999ā1021 (2010)
Zandkarimi, F., Rehse, J.R., Soudmand, P., Hoehle, H.: A generic framework for trace clustering in process mining. In: 2020 2nd International Conference on Process Mining (ICPM), pp. 177ā184 (2020). https://doi.org/10.1109/ICPM49681.2020.00034
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Lu, Y., Chen, Q., Poon, S.K. (2022). Detecting Context Activities in Event Logs. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2022 2022. Lecture Notes in Business Information Processing, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-031-07475-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-07475-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07474-5
Online ISBN: 978-3-031-07475-2
eBook Packages: Computer ScienceComputer Science (R0)