Skip to main content

Empirical Analysis of Technology Acceptance of Private Electric Vehicle Charging Infrastructure in Germany

  • Conference paper
  • First Online:
Advanced Information Systems Engineering Workshops (CAiSE 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 451))

Included in the following conference series:

  • 483 Accesses

Abstract

Private charging infrastructure is critical to the diffusion of electric vehicles. However, as with all technologies, user acceptance is of primary importance here. This paper analyzes this acceptance with an empirical study with 488 participants. For this, a context-specific technology acceptance model including 9 hypotheses is developed. To validate the hypotheses, an online survey is designed for the German market. Results deliver insights on the general opinion on electromobility and private charging infrastructure and determine the factors influencing the acceptance behavior of potential users with regard to private charging infrastructure. Regarding the general opinion, most of the survey participants show a positive attitude. Regarding the factors, some, such as perceived effort and perceived usefulness, have an influence on the acceptance, while other factors, such as visual design and perceived cost, don’t.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Markkula, J., Rautiainen, A., Jarventausta, P.: The business case of electric vehicle quick charging - no more chicken or egg problem. In: World Electric Vehicle Symposium and Exposition (EVS 27), vol. 2013, pp. 1–7 (2013)

    Google Scholar 

  2. Horváth & Partners: Status quo der E-Mobilität in Deutschland (2020). https://www.horvath-partners.com/de/media-center/studien/faktencheck-e-mobilitaet-status-quo-der-e-mobilitaet-in-deutschland-update-2020/

  3. International Energy Agency: Global EV Outlook 2021. Accelerating ambitions despite the pandemic (2021)

    Google Scholar 

  4. Peters, A., Hoffmann, J.: Nutzerakzeptanz von Elektromobilität. Eine empirische Studie zu attraktiven Nutzungsvarianten, Fahrzeugkonzepten und Geschäftsmodellen aus Sicht potenzieller Nutzer (2011)

    Google Scholar 

  5. Kley, F., Lerch, C., Dallinger, D.: New business models for electric cars—a holistic approach. Energy Policy 39, 3392–3403 (2011)

    Article  Google Scholar 

  6. Madina, C., Zamora, I., Zabala, E.: Methodology for assessing electric vehicle charging infrastructure business models. Energy Policy 89, 284–293 (2016)

    Article  Google Scholar 

  7. Nobis, C., Kuhnimhof, T.: Mobilität in Deutschland (2018). http://www.mobilitaet-in-deutschland.de/pdf/MiD2017_Ergebnisbericht.pdf

  8. Daubitz, S., Kawgan-Kagan, I.: Integrated charging infrastructure: cognitive interviews to identify preferences in charging options. Eur. Transp. Res. Rev. 7(4), 1–14 (2015). https://doi.org/10.1007/s12544-015-0184-2

    Article  Google Scholar 

  9. Endruweit, G. (ed.): Wörterbuch der Soziologie. UTB Soziologie, vol. 8566. UVK-Verl.-Ges, Konstanz (2014)

    Google Scholar 

  10. Schneider, U., Dütschke, E., Peters, A.: How does the actual usage of electric vehicles influence consumer acceptance? In: Hülsmann, M., Fornahl, D. (eds.) Evolutionary Paths Towards the Mobility Patterns of the Future. Lecture Notes in Mobility, Springer, Berlin, pp. 49–66 (2014). https://doi.org/10.1007/978-3-642-37558-3_4

  11. Philipsen, R., Schmidt, T., Ziefle, M.: Well worth a detour? - Users’ preferences regarding the attributes of fast-charging infrastructure for electromobility. In: Stanton, N.A., Landry, S., Di Bucchianico, G., Vallicelli, A. (eds.) Advances in Human Aspects of Transportation. Advances in Intelligent Systems and Computing, vol. 484, Springer, Cham, pp. 937–950 (2017). https://doi.org/10.1007/978-3-319-41682-3_77

  12. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: Theory and results (1985)

    Google Scholar 

  13. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35, 982–1003 (1989)

    Article  Google Scholar 

  14. Davis, F.D.: User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. Int. J. Man Mach. Stud. 38, 475–487 (1993)

    Article  Google Scholar 

  15. Arnold, C., Klee, C.: Akzeptanz von Produktinnovationen. Springer Fachmedien Wiesbaden, Wiesbaden (2016). https://doi.org/10.1007/978-3-658-11537-1

  16. Schepers, J., Wetzels, M.: A meta-analysis of the technology acceptance model: investigating subjective norm and moderation effects. Inf. Manage. 44, 90–103 (2007)

    Article  Google Scholar 

  17. Olbrecht, T.: Akzeptanz von E-Learning: eine Auseinandersetzung mit dem Technologieakzeptanzmodell zur Analyse individueller und sozialer Einflussfaktoren (2010)

    Google Scholar 

  18. Venkatesh, V., Davis, F.: A Theoretical extension of the technology acceptance model: four longitudinal field studies. Manage. Sci. 46, 186–204 (2000)

    Article  Google Scholar 

  19. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003)

    Article  Google Scholar 

  20. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39, 273–315 (2008)

    Article  Google Scholar 

  21. Shen, D., Laffey, J., Lin, Y., Huang, X.: Social influence for perceived usefulness and ease-of-use of course delivery systems. J. Interact. Online Learn. 5, 270–282 (2006)

    Google Scholar 

  22. Fazel, L.: Akzeptanz von Elektromobilität. Springer Fachmedien Wiesbaden, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-05090-0

  23. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: Extrinsic and intrinsic motivation to use computers in the workplace 1. J. Appl. Soc. Psychol. 22, 1111–1132 (1992)

    Article  Google Scholar 

  24. Feess, E., GĂĽnther, E.: Definition: Umweltbewusstsein. Springer Fachmedien Wiesbaden GmbH, Wiesbaden (2018)

    Google Scholar 

  25. Porst, R.: Fragebogen. Ein Arbeitsbuch. Springers, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-02118-4

  26. Döring, N., Bortz, J.: Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften. Springer, Berlin (2016). https://doi.org/10.1007/978-3-642-41089-5

  27. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 5–55 (1932)

    Google Scholar 

  28. Hornburg, C., Giering, A.: Konzeptualisierung und Operationalisierung komplexer Konstrukte. Ein Leitfaden für die Marketingforschung. Marketing ZFP 18, 5–24 (1996)

    Google Scholar 

  29. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319 (1989)

    Article  Google Scholar 

  30. Chang, S.-C., Tung, F.-C.: An empirical investigation of students’ behavioural intentions to use the online learning course websites. Br. J. Edu. Technol. 39, 71–83 (2007)

    Google Scholar 

  31. Roca, J.C., Chiu, C.-M., Martínez, F.J.: Understanding e-learning continuance intention: an extension of the technology acceptance model. Int. J. Hum Comput. Stud. 64, 683–696 (2006)

    Article  Google Scholar 

  32. Shin, D.: An empirical investigation of a modified technology acceptance model of IPTV. Behav. IT 28, 361–372 (2009)

    Google Scholar 

  33. Cochran, W.G.: Sampling Techniques. Wiley, New York (1963)

    MATH  Google Scholar 

  34. Legris, P., Ingham, J., Collerette, P.: Why do people use information technology? A critical review of the technology acceptance model. Inf. Manage. 40, 191–204 (2003)

    Article  Google Scholar 

  35. Boomsma, A.: The robustness of LISREL against small sample sizes in factor analysis models Systems under indirect observation, pp. 149–173

    Google Scholar 

  36. Cronbach, L.J.: Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334 (1951)

    Article  Google Scholar 

  37. Ziefle, M., Beul-Leusmann, S., Kasugai, K., Schwalm, M.: Public perception and acceptance of electric vehicles: exploring users’ perceived benefits and drawbacks. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8519, pp. 628–639. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07635-5_60

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Tafreschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deumlich, T., Amberger, M., Tafreschi, O. (2022). Empirical Analysis of Technology Acceptance of Private Electric Vehicle Charging Infrastructure in Germany. In: Horkoff, J., Serral, E., Zdravkovic, J. (eds) Advanced Information Systems Engineering Workshops. CAiSE 2022. Lecture Notes in Business Information Processing, vol 451. Springer, Cham. https://doi.org/10.1007/978-3-031-07478-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07478-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07477-6

  • Online ISBN: 978-3-031-07478-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics