Skip to main content

Radiomic-Based Lung Nodule Classification in Low-Dose Computed Tomography

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

Radiomics is a systematic approach to characterize objects in terms of their radiological appearance. We used radiomic features of 5027 objects of 6 classes and trained a binary classifier with 79% accuracy. Features were obtained by using our novel preprocessing pipeline for object segmentation from the lung tissue in a low-dose Computed Tomography (LDCT) imaging technique. Our results show that radiomic features prove effective in distinguishing between suspicious and benign objects located in the lung tissue. Our data shows that there is vast space for improvement from both model- as well as a data-centric approach to developing Computer-aided detection (CAD) systems based on radiomics for early lung cancer detection. We show our results in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2021. CA. Cancer J. Clin. 71(1), 7–33 (2021). https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Torre, L.A., Siegel, R.L., Jemal, A.: Lung cancer statistics. In: Ahmad, A., Gadgeel, S. (eds.) Lung Cancer and Personalized Medicine. AEMB, vol. 893, pp. 1–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24223-1_1

    Chapter  Google Scholar 

  3. Dela Cruz, C.S., Tanoue, L.T., Matthay, R.A.: Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med. 32(4), 605–644 (2011). https://doi.org/10.1016/j.ccm.2011.09.001

    Article  PubMed  Google Scholar 

  4. Jaklitsch, M.T., et al.: The American Association for Thoracic Surgery guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer survivors and other high-risk groups. J. Thorac. Cardiovasc. Surg. 144(1), 33–38 (2012). https://doi.org/10.1016/j.jtcvs.2012.05.060

    Article  PubMed  Google Scholar 

  5. Sands, J., et al.: Lung screening benefits and challenges: a review of the data and outline for implementation. J. Thorac. Oncol. 16(1), 37–53 (2021). https://doi.org/10.1016/j.jtho.2020.10.127

    Article  PubMed  Google Scholar 

  6. Rampinelli, C., Origgi, D., Bellomi, M.: Low-dose CT: technique, reading methods and image interpretation. Cancer Imaging 12(3), 548–556 (2012). https://doi.org/10.1102/1470-7330.2012.0049

    Article  Google Scholar 

  7. Kubo, T., Ohno, Y., Takenaka, D., Nishino, M., Gautam, S.: Standard-dose vs. low-dose CT protocols in the evaluation of localized lung lesions: capability for lesion characterization—iLEAD study. Eur. J. Radiol. Open 3, 67–73 (2016). https://doi.org/10.1016/j.ejro.2016.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shariaty, F., Mousavi, M.: Application of CAD systems for the automatic detection of lung nodules. Inf. Med. Unlocked 15, 100173 (2019). https://doi.org/10.1016/j.imu.2019.100173

    Article  Google Scholar 

  9. Brown, M., et al.: Integration of chest CT CAD into the clinical workflow and impact on radiologist efficiency. Acad. Radiol. 26(5), 626–631 (2019). https://doi.org/10.1016/j.acra.2018.07.006

    Article  PubMed  Google Scholar 

  10. Schreuder, A., Scholten, E.T., van Ginneken, B., Jacobs, C.: Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice? Transl. Lung Cancer Res. 10(5), 2378–2388 (2021). https://doi.org/10.21037/tlcr-2020-lcs-06

    Article  PubMed  PubMed Central  Google Scholar 

  11. Suarez-Ortega, C., Franco-Valiente, J.M.: Using CAD systems and e-Learning in radiologists training. In: 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services, Healthcom 2013, pp. 172–176 (2013). https://doi.org/10.1109/HealthCom.2013.6720661

  12. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  13. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016). https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  14. van Timmeren, J.E., Cester, D., Tanadini-Lang, S., Alkadhi, H., Baessler, B.: Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11(1), 91 (2020). https://doi.org/10.1186/s13244-020-00887-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shaukat, F., Raja, G., Frangi, A.F.: Computer-aided detection of lung nodules: a review. J. Med. Imaging 6(02), 1 (2019). https://doi.org/10.1117/1.JMI.6.2.020901

    Article  Google Scholar 

  16. Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch, H., Langs, G.: Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur. Radiol. Exp. 4(1), 1–13 (2020). https://doi.org/10.1186/s41747-020-00173-2

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zwanenburg, A., et al.: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2), 328–338 (2020). https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

WP benefits from the European Union scholarship through the European Social Fund (grant POWR.03.05.00-00-Z305) and from OPUS grant no. 2017/27/B/NZ7/01833. JP was financed by 02/070/BK_22/0033 project and by OPUS grant no. 2017/27/B/NZ7/01833. Calculations were carried out using GeCONiI infrastructure funded by NCBiR project no. POIG.02.03.01-24-099/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Prazuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prazuch, W., Jelitto-Gorska, M., Durawa, A., Dziadziuszko, K., Polanska, J. (2022). Radiomic-Based Lung Nodule Classification in Low-Dose Computed Tomography. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics