Skip to main content

Gene Expression Tools from a Technical Perspective: Current Approaches and Alternative Solutions for the KnowSeq Suite

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

The precision and personalized medicine is declared as the next revolutionary paradigm in the current health outlook. With this assumption, many challenges must be faced to achieve that paradigm shift. One of these important challenges is the creation and development of tools with the capability of exploiting biological data to infer or extract new and relevant knowledge. In this sense, these tools must fulfill a set of requirements such as scalability, security and a user-friendly design. That is the way to change the users scope from technicians to all type of researchers, physicians and other non-technical users. Along this article, a review of several gene expression analysis tools has been addressed, with the aim of studying their pros and cons. Then, two different implementations are proposed taking into account the current state of KnowSeq R/Bioc package, with the purpose of showing different use cases to migrate one concrete tool to a web application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://mlflow.org/.

  2. 2.

    https://optuna.org/.

  3. 3.

    https://www.ray.io/.

  4. 4.

    https://mazamascience.github.io/beakr/.

  5. 5.

    https://rdocumentation.org/packages/fiery/versions/0.2.3.

  6. 6.

    https://cran.r-project.org/web/packages/ambiorix/readme/README.html.

  7. 7.

    https://redis.io/.

  8. 8.

    https://www.rabbitmq.com/.

References

  1. Anaconda: The world’s most popular data science platform. https://www.anaconda.com/

  2. Anders, S., Pyl, P.T., Huber, W.: HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169 (2015)

    Article  CAS  Google Scholar 

  3. Beauchemin, M., Murray, M.T., Sung, L., Hershman, D.L., Weng, C., Schnall, R.: Clinical decision support for therapeutic decision-making in cancer: a systematic review. Int. J. Med. Inform. 130, 103940 (2019)

    Article  Google Scholar 

  4. Castillo-Secilla, D., et al.: KnowSeq R-Bioc package: the automatic smart gene expression tool for retrieving relevant biological knowledge. Comput. Biol. Med. 133, 104387 (2021)

    Article  CAS  Google Scholar 

  5. Chang, W., et al.: Shiny: Web Application Framework for R (2021). https://CRAN.R-project.org/package=shiny, R package version 1.7.1

  6. Chao, K.H., et al.: RNASeqR: an R package for automated two-group RNA-Seq analysis workflow. IEEE/ACM Trans. Comput. Biol. Bioinform. 18, 2023–2031 (2019)

    Article  Google Scholar 

  7. Colaprico, A., et al.: TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucl. Acids Res. 44(8), e71–e71 (2016)

    Article  Google Scholar 

  8. Cornwell, M., et al.: VIPER: visualization pipeline for RNA-Seq, a snakemake workflow for efficient and complete RNA-Seq analysis. BMC Bioinform. 19(1), 1–14 (2018)

    Article  Google Scholar 

  9. D’Antonio, M., et al.: RAP: RNA-Seq analysis pipeline, a new cloud-based NGS web application. BMC Genom. 16(6), 1–11 (2015)

    Google Scholar 

  10. Domenech, A.M., Guillén, A.: ml-experiment: a python framework for reproducible data science. J. Phys. Conf. Ser. 1603(1), 012025 (2020). https://doi.org/10.1088/1742-6596/1603/1/012025

  11. Gentleman, R.C., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5(10), 1–16 (2004)

    Article  Google Scholar 

  12. Gómez-López, G., Dopazo, J., Cigudosa, J.C., Valencia, A., Al-Shahrour, F.: Precision medicine needs pioneering clinical bioinformaticians. Brief. Bioinform. 20(3), 752–766 (2019)

    Article  Google Scholar 

  13. Howe, E.A., Sinha, R., Schlauch, D., Quackenbush, J.: RNA-Seq analysis in MeV. Bioinformatics 27(22), 3209–3210 (2011)

    Article  CAS  Google Scholar 

  14. Huang, G., et al.: ARMT: an automatic RNA-Seq data mining tool based on comprehensive and integrative analysis in cancer research. Comput. Struct. Biotechnol. J. 19, 4426–4434 (2021)

    Article  CAS  Google Scholar 

  15. Johnson, B.K., Scholz, M.B., Teal, T.K., Abramovitch, R.B.: Sparta: simple program for automated reference-based bacterial RNA-Seq transcriptome analysis. BMC Bioinform. 17(1), 1–4 (2016)

    Google Scholar 

  16. Kim, D., Langmead, B., Salzberg, S.L.: HiSAT: a fast spliced aligner with low memory requirements. Nat. Methods 12(4), 357–360 (2015)

    Article  CAS  Google Scholar 

  17. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L.: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), 1–13 (2013)

    Article  Google Scholar 

  18. Köster, J., Rahmann, S.: Snakemake-a scalable bioinformatics workflow engine. Bioinformatics 28(19), 2520–2522 (2012)

    Article  Google Scholar 

  19. Langmead, B., Hansen, K.D., Leek, J.T.: Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol. 11(8), 1–11 (2010)

    Article  Google Scholar 

  20. Law, C.W., et al.: RNA-Seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research, vol. 5 (2016)

    Google Scholar 

  21. Lohse, M., et al.: Robina: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucl. Acids Res. 40(W1), W622–W627 (2012)

    Article  CAS  Google Scholar 

  22. López-Fernández, H., Blanco-Míguez, A., Fdez-Riverola, F., Sánchez, B., Lourenço, A.: DEWE: a novel tool for executing differential expression RNA-Seq workflows in biomedical research. Comput. Biol. Med. 107, 197–205 (2019)

    Article  Google Scholar 

  23. Powell., D.R.: Degust: interactive RNA-Seq analysis. https://doi.org/10.5281/zenodo.3258932

  24. SASC Team, L.U.M.C.: BioWDL: a collection of WDL pipelines for sequencing analyses. https://biowdl.github.io/

  25. Schloerke, B., Allen, J.: Plumber: an API Generator for R (2022). https://www.rplumber.io, https://github.com/rstudio/plumber

  26. Seelbinder, B., et al.: Geo2RNASeq: an easy-to-use r pipeline for complete pre-processing of RNA-Seq data. BioRxiv, p. 771063 (2019)

    Google Scholar 

  27. Varet, H., Brillet-Guéguen, L., Coppée, J.Y., Dillies, M.A.: SARTools: a DESeq2-and edgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PloS ONE 11(6), e0157022 (2016)

    Article  Google Scholar 

  28. Wang, D.: hppRNA-a snakemake-based handy parameter-free pipeline for RNA-Seq analysis of numerous samples. Brief. Bioinform. 19(4), 622–626 (2018)

    CAS  PubMed  Google Scholar 

  29. Wang, Y., et al.: Rseqflow: workflows for RNA-Seq data analysis. Bioinformatics 27(18), 2598–2600 (2011)

    Article  CAS  Google Scholar 

  30. Wang, Z., Ma’ayan, A.: An open RNA-Seq data analysis pipeline tutorial with an example of reprocessing data from a recent zika virus study. F1000Research 5, 1574 (2016)

    Google Scholar 

  31. Zhang, Z.H., Wray, N.R., Zhao, Q.Y.: Dear-O: differential expression analysis based on RNA-Seq data-online. BioRxiv, p. 069807 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Ministry of Sciences, Innovation and Universities under Project RTI2018-101674-B-I00 titled “Computer Architectures and Machine Learning- based solutions for complex challenges in Bioinformatics, Biotechnology and Biomedicine”, in collaboration with the Government of Andalusia under the projects P20_00163 and CV20-64934. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Castillo-Secilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castillo-Secilla, D., Redondo-Sánchez, D., Herrera, L.J., Rojas, I., Guillén, A. (2022). Gene Expression Tools from a Technical Perspective: Current Approaches and Alternative Solutions for the KnowSeq Suite. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics