Skip to main content

Collecting SARS-CoV-2 Encoded miRNAs via Text Mining

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

Established text mining approaches can be used to identify miRNAs mentioned in published papers and preprints. Here, we apply such a targeted approach to the LitCovid literature collection in order to find viral miRNAs published in connection to SARS-CoV-2. As LitCovid aims at being a comprehensive collection of literature on new findings on SARS-CoV-2 and the COVID-19 pandemic, it is perfectly suited for our goal of finding all reported SARS-CoV-2 miRNAs. The identified miRNAs provide an up-to-date and quite comprehensive collection of potential viral miRNAs, which is a useful resource for further research to fight the current pandemic.

We identified 564 putative SARS-CoV-2 miRNAs together with the respective evidences, i.e. the original publications, and collect them for critical review. The text mining method and the corresponding synonym list are optimized for finding viral miRNAs and the results are manually curated. Since not all miRNAs were experimentally verified, the collection might contain false positives, but it is highly sensitive. Moreover, the text mining approach and resulting collection of miRNA candidates can be useful resources for further SARS-CoV-2 research and for experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aydemir, M.N., Aydemir, H.B., Korkmaz, E.M., Budak, M., Cekin, N., Pinarbasi, E.: Computationally predicted SARS-CoV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways. Gene Reports 22 (2021)

    Google Scholar 

  2. Chen, Q., Allot, A., Lu, Z.: Keep up with the latest coronavirus research. Nature 579, 193–194 (2020)

    Article  CAS  Google Scholar 

  3. Chen, Q., Allot, A., Lu, Z.: LitCovid: an open database of COVID-19 literature. Nucl. Acids Res. 49, D1534–D1540 (2021)

    Google Scholar 

  4. Demirci, M.D.S., Adan, A.: Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ 8, e9369 (2020)

    Google Scholar 

  5. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19 in real time. Lancet. Infect. Dis 20, 533–534 (2020)

    Article  CAS  Google Scholar 

  6. Fu, Z., et al.: A virus-derived microRNA-like small RNA serves as a serum biomarker to prioritize the COVID-19 patients at high risk of developing severe disease. Cell Discov. 7, 1–4 (2021)

    Article  Google Scholar 

  7. Honnibal, M., et al.: explosion/spaCy: v2.1.7: improved evaluation, better language factories and bug fixes, August 2019

    Google Scholar 

  8. Joppich, M.: Integrative bioinformatics applications for complex human disease contexts, November 2021

    Google Scholar 

  9. Joppich, M., Weber, C., Zimmer, R.: Using context-sensitive text mining to identify miRNAs in different stages of atherosclerosis. Thromb. Haemost. 119, 1247–1264 (2019)

    Article  Google Scholar 

  10. Kaiser, R., et al.: Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight 6 (2021)

    Google Scholar 

  11. Karimi, E., Azari, H., Yari, M., Tahmasebi, A., Azad, M.H., Mousavi, P.: Interplay between SARS-CoV-2-derived miRNAs, immune system, vitamin D pathway and respiratory system. J. Cell Mol. Med. 25, 7825–7839 (2021)

    Article  CAS  Google Scholar 

  12. Khan, M.A.A.K., Sany, M.R.U., Islam, M.S., Islam, A.B.M.M.K.: Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front. Genet. 11 (2020)

    Google Scholar 

  13. Kozomara, A., Birgaoanu, M., Griffiths-Jones, S.: MiRBase: from microRNA sequences to function. Nucl. Acids Res. 47, D155–D162 (2019)

    Google Scholar 

  14. Liao, M., et al.: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020)

    Article  CAS  Google Scholar 

  15. Liu, Z., et al.: SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response. J. Biomed. Res. 35, 216 (2021)

    Article  Google Scholar 

  16. Meng, F., et al.: Viral MicroRNAs encoded by nucleocapsid gene of SARS-CoV-2 are detected during infection, and targeting metabolic pathways in host cells. Cells 10(7), 1762 (2021)

    Article  CAS  Google Scholar 

  17. Merino, G.A., et al.: Novel SARS-CoV-2 encoded small RNAs in the passage to humans. Bioinformatics 36, 5571–5581 (2020)

    Article  CAS  Google Scholar 

  18. Mishra, R., Kumar, A., Ingle, H., Kumar, H.: The interplay between viral-derived miRNAs and host immunity during infection. Front. Immunol. 10, 3079 (2020)

    Article  Google Scholar 

  19. Morales, L., Oliveros, J.C., Fernandez-Delgado, R., tenOever, B.R., Enjuanes, L., Sola, I.: SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology. Cell Host Microbe 21, 344–355 (2017)

    Article  CAS  Google Scholar 

  20. Neumann, M., King, D., Beltagy, I., Ammar, W.: ScispaCy: fast and robust models for biomedical natural language processing. In: BioNLP 2019 - SIGBioMed Workshop on Biomedical Natural Language Processing, Proceedings of the 18th BioNLP Workshop and Shared Task (2019)

    Google Scholar 

  21. Nicolai, L., et al.: Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. J. Thromb. Haemost. 19, 574–581 (2021)

    Article  CAS  Google Scholar 

  22. Pawlica, P., et al.: SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proc. Natl. Acad. Sci. 118, e2116668118 (2021)

    Google Scholar 

  23. Pekayvaz, K., et al.: Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection. Nat. Commun. 13, 1018 (2022)

    Article  CAS  Google Scholar 

  24. Qureshi, A., Thakur, N., Monga, I., Thakur, A., Kumar, M.: VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database J. Biol. Databases Curation 2014 (2014)

    Google Scholar 

  25. Rahaman, M., Komanapalli, J., Mukherjee, M., Byram, P.K., Sahoo, S., Chakravorty, N.: Decrypting the role of predicted SARS-CoV-2 miRNAs in COVID-19 pathogenesis: a bioinformatics approach. Comput. Biol. Med. 136, 104669 (2021)

    Google Scholar 

  26. Roy, S., et al.: Identification and host response interaction study of SARS-CoV-2 encoded miRNA-like sequences: an in silico approach. Comput. Biol. Med. 134, 104451 (2021)

    Google Scholar 

  27. Saini, S., Saini, A., Thakur, C.J., Kumar, V., Gupta, R.D., Sharma, J.K.: Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity. Mol. Biol. Res. Commun. 9, 83 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sarma, A., Phukan, H., Halder, N., Madanan, M.G.: An in-silico approach to study the possible interactions of miRNA between human and SARS-CoV-2. Comput. Biol. Chem. 88, 107352 (2020)

    Google Scholar 

  29. Satyam, R., et al.: miRNAs in SARS-CoV 2: a spoke in the wheel of pathogenesis. Curr. Pharm. Des. 27, 1628–1641 (2020)

    Article  Google Scholar 

  30. Singh, M., et al.: A virus-derived microRNA targets immune response genes during SARS-CoV-2 infection. EMBO Rep. 23, e54341 (2022)

    Google Scholar 

  31. Verma, S., Dwivedy, A., Kumar, N., Biswal, B.K.: Computational prediction of SARS-CoV-2 encoded miRNAs and their 2 putative host targets. bioRxiv (2020)

    Google Scholar 

  32. Wilk, A.J., et al.: A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020)

    Article  CAS  Google Scholar 

  33. Wyler, E., et al.: Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience 24, 102151 (2021)

    Google Scholar 

  34. Yu, T.Y., Chen, M., Wang, C.D.: Annotation of miRNAs in the COVID-19 Novel Coronavirus. J. Electron. Sci. Technol. 19, 100060 (2021)

    Article  Google Scholar 

  35. Zhu, Y., et al.: SARS-CoV-2-encoded MiRNAs inhibit host type i interferon pathway and mediate allelic differential expression of susceptible gene. Front. Immunol. 12 (2021)

    Google Scholar 

  36. Çetin, Z., Bayrak, T., Oğul, H., İlker Saygılı, E., Akkol, E.K.: Predicted SARS-CoV-2 miRNAs associated with epigenetic viral pathogenesis and the detection of new possible drugs for Covid-19. Curr. Drug Deliv. 18, 1595–1610 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work as been supported by Deutsche Forschungsgemeinschaft (DFG), CRC1123, project Z02 (MJ+RZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Hadziahmetovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schubö, A., Hadziahmetovic, A., Joppich, M., Zimmer, R. (2022). Collecting SARS-CoV-2 Encoded miRNAs via Text Mining. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics