Skip to main content

Adaptative Modelling of the Corneal Architecture in a Free-of-Stress State in Incipient Keratoconus

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

Finite element models (FEM) have been a breakthrough in the field of medicine for a wide variety of applications. They have been used, for example, for predicting the behaviour of many biological structures, as well as to foresee the possible outcomes of some types of operations. One of the basic problems when modelling biological structures is finding a way to determine the initial geometric parameters with a sufficient degree of precision, so that the results are representative. In the case of computational models used for the study of corneal biomechanics, the knowledge of initial conditions defined in a finite element model become critical, since they represent the in-vivo state of the biological structure by means of a computer simulation. There is a lack of consensus among the investigations carried out to date regarding whether the initial status in the FEM models should be considered or not. In this research work, two approaches that aim to determine the geometry of the in-vivo state of the cornea with mild keratoconus have been compared: the so-called stress-free geometry on the one side, and the initial tension state on the other side. The results obtained allow comparisons between them, and validate both approaches when they are used to obtain corneal geometry in initial stress-free conditions for a FEM model when incipient keratoconus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavas-Martínez, F., De la Cruz Sánchez, E., Nieto Martínez, J., Fernández Cañavate, F.J., Fernández-Pacheco, D.G.: Corneal topography in keratoconus: state of the art. Eye Vis. (London, England) 3(5) (2016). https://doi.org/10.1186/s40662-016-0036-8

  2. Ma, J., Wang, Y., Wei, P., Jhanji, V.: Biomechanics and structure of the cornea: implications and association with corneal disorders. Surv. Ophthalmol. 63, 851–861 (2018). https://doi.org/10.1016/j.survophthal.2018.05.004

    Article  PubMed  Google Scholar 

  3. Kling, S., Hafezi, F.: Corneal biomechanics - a review. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. (Optom.) 37, 240–252 (2017). https://doi.org/10.1111/opo.12345

    Article  Google Scholar 

  4. Bryant, M.R., McDonnell, P.J.: Constitutive laws for biomechanical modeling of refractive surgery. J. Biomech. Eng. 118, 473–481 (1996). https://doi.org/10.1115/1.2796033

    Article  CAS  PubMed  Google Scholar 

  5. Buzard, K.A.: Introduction to biomechanics of the cornea. Refract. Corneal Surg. 8, 127–138 (1992)

    Article  CAS  PubMed  Google Scholar 

  6. Navarro, R., González, L., Hernández, J.L.: Optics of the average normal cornea from general and canonical representations of its surface topography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 219–232 (2006). https://doi.org/10.1364/josaa.23.000219

    Article  PubMed  Google Scholar 

  7. Gómez, C., Piñero, D.P., Paredes, M., Alió, J.L., Cavas, F.: Iterative methods for the biomechanical evaluation of corneal response. A case study in the measurement phase. Appl. Sci. 11, 10819 (2021)

    Article  Google Scholar 

  8. Ariza-Gracia, M., Ortillés, Á., Cristóbal, J., Rodríguez Matas, J.F., Calvo, B.: A numerical-experimental protocol to characterize corneal tissue with an application to predict astigmatic keratotomy surgery. J. Mech. Behav. Biomed. Mater. 74, 304–314 (2017). https://doi.org/10.1016/j.jmbbm.2017.06.017

    Article  CAS  PubMed  Google Scholar 

  9. Ariza-Gracia, M.Á., Zurita, J., Piñero, D.P., Calvo, B., Rodríguez-Matas, J.F.: Automatized patient-specific methodology for numerical determination of biomechanical corneal response. Ann. Biomed. Eng. 44(5), 1753–1772 (2015). https://doi.org/10.1007/s10439-015-1426-0

    Article  PubMed  Google Scholar 

  10. Pandolfi, A.: Cornea modelling. Eye Vis. (London, England) 7, 2 (2020). https://doi.org/10.1186/s40662-019-0166-x

    Article  Google Scholar 

  11. Pandolfi, A., Holzapfel, G.A.: Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J. Biomech. Eng. 130, 061006 (2008). https://doi.org/10.1115/1.2982251

    Article  PubMed  Google Scholar 

  12. Elsheikh, A., Whitford, C., Hamarashid, R., Kassem, W., Joda, A., Büchler, P.: Stress free configuration of the human eye. Med. Eng. Phys. 35, 211–216 (2013). https://doi.org/10.1016/j.medengphy.2012.09.006

    Article  PubMed  Google Scholar 

  13. Lanchares, E., Calvo, B., Cristóbal, J.A., Doblaré, M.: Finite element simulation of arcuates for astigmatism correction. J. Biomech. 41, 797–805 (2008). https://doi.org/10.1016/j.jbiomech.2007.11.010

    Article  PubMed  Google Scholar 

  14. Alastrué, V., Calvo, B., Peña, E., Doblaré, M.: Biomechanical modeling of refractive corneal surgery. J. Biomech. Eng. 128, 150–160 (2006). https://doi.org/10.1115/1.2132368

    Article  PubMed  Google Scholar 

  15. Elsheikh, A., Wang, D., Kotecha, A., Brown, M., Garway-Heath, D.: Evaluation of Goldmann applanation tonometry using a nonlinear finite element ocular model. Ann. Biomed. Eng. 34, 1628–1640 (2006). https://doi.org/10.1007/s10439-006-9191-8

    Article  PubMed  Google Scholar 

  16. Navarro, R., Palos, F., Lanchares, E., Calvo, B., Cristóbal, J.A.: Lower- and higher-order aberrations predicted by an optomechanical model of arcuate keratotomy for astigmatism. J. Cataract Refract. Surg. 35, 158–165 (2009). https://doi.org/10.1016/j.jcrs.2008.09.015

    Article  PubMed  Google Scholar 

  17. Alifa, R., Piñero, D., Velázquez, J., Alió Del Barrio, J.L., Cavas, F., Alió, J.L.: Changes in the 3D corneal structure and morphogeometric properties in keratoconus after corneal collagen crosslinking. Diagnostics (Basel, Switzerland) 10, 397 (2020). https://doi.org/10.3390/diagnostics10060397

  18. Toprak, I., Cavas, F., Velázquez, J.S., Alió Del Barrio, J.L., Alió, J.L.: Three-dimensional morphogeometric and volumetric characterization of cornea in pediatric patients with early keratoconus. Am. J. Ophthalmol. 222, 102–111 (2021). https://doi.org/10.1016/j.ajo.2020.09.031

    Article  PubMed  Google Scholar 

Download references

Funding

This publication was carried out within the framework of the project “Desarrollo y validación de un nuevo concepto de caracterización biomecánica-morfofuncional de la córnea” reference number DTS21/00103. This Project has been funded by Instituto de Salud Carlos III (ISCIII) and cofunded by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavas, F., Gómez, C., Velázquez, J.S., Piñero, D., Sáez-Gutiérrez, F.L., Alió, J. (2022). Adaptative Modelling of the Corneal Architecture in a Free-of-Stress State in Incipient Keratoconus. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics