Abstract
Fault diagnosis systems are necessary in industrial plants to reach high economic profits and high levels of industrial safety. For achieving these aims, it is necessary a fast detection and identification of faults that occur in the plants. However, the performance of the fault diagnosis systems, are affected by the presence of noise and missing information on the measured variables from the industrial systems. In this paper, a novel methodology for fault diagnosis in industrial plants is proposed by using computational intelligence tools. The proposal presents a robust behavior in the presence of missing data and noise in the measurements by achieving high levels of performance. The imputation process prior to the diagnosis of failures is carried out online, this being one of the advantages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, Q., Raza, S.A., Al-Anazi, D.M.: Reliability-based fault analysis models with industrial applications: a systematic literature review. Qual. Reliab. Eng. Int. 37(4), 1307–1333 (2021). https://doi.org/10.1002/qre.2797
Askarian, M., Escudero, G., Graells, M., Zarghami, R., Jalali-Farahani, F., Mostoufi, N.: Fault diagnosis of chemical processes with incomplete observations: a comparative study. Comput. Chem. Eng. 84, 104–116 (2016). https://doi.org/10.1016/j.compchemeng.2015.08.018
Bartyś, M., Patton, R., Syfert, M., de las Heras, S., Quevedo, J.: Introduction to the DAMADICS actuator FDI benchmark study. Control Eng. Pract. 14, 577–596 (2006). https://doi.org/10.1016/j.conengprac.2005.06.015
Bishop, C.M.: Pattern recognition. Mach. Learn. 128(9) (2006)
Cerrada, M., et al.: A review on data-driven fault severity assessment in rolling bearings. Mech. Syst. Signal Process. 99, 169–196 (2018). https://doi.org/10.1016/j.ymssp.2017.06.012
Chen, X., Zhang, B., Gao, D.: Bearing fault diagnosis base on multi-scale CNN and LSTM model. J. Intell. Manuf. 32(4), 971–987 (2020). https://doi.org/10.1007/s10845-020-01600-2
Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, London (1982)
Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000). https://doi.org/10.1162/089976600300015015
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arxiv: 1412.6980. Retrieved from the arXiv database (2014)
Lee, J.H., Pack, J.H., Lee, I.S.: Fault diagnosis of induction motor using convolutional neural network. Appl. Sci. 9(15) (2019). https://doi.org/10.3390/app9152950
Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. Wiley, Hoboken (2019)
Llanes-Santiago, O., Rivero-Benedico, B., Gálvez-Viera, S., Rodríguez-Morant, E., Torres-Cabeza, R., Silva-Neto, A.: A fault diagnosis proposal with online imputation to incomplete observations in industrial plants. Revista Mexicana de Ingeniería Química 18(1), 83–98 (2019)
Luengo, J., García, S., Herrera, F.: A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests. Expert Syst. Appl. 36(4), 7798–7808 (2009). https://doi.org/10.1016/j.eswa.2008.11.041
Medina, R., et al.: A LSTM neural network approach using vibration signals for classifying faults in a Gearbox. Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019, pp. 208–214 (2019). https://doi.org/10.1109/SDPC.2019.00045
Patan, K.: Artificial Neural Networks for the Modelling and fault Diagnosis Of Technical Processes. Lecture Notes in Control and Information Sciences, Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79872-9
Prieto-Moreno, A., Llanes-Santiago, O., García-Moreno, E.: Principal components selection for dimensionality reduction using discriminant information applied to fault diagnosis. J. Process Control 33, 14–24 (2015). https://doi.org/10.1016/j.jprocont.2015.06.003
Rodríguez Ramos, A., et al.: An approach to multiple fault diagnosis using fuzzy logic. J. Intell. Manuf. 30(1), 429–439 (2016). https://doi.org/10.1007/s10845-016-1256-4
Rodríguez Ramos, A., Bernal de Lázaro, J.M., Prieto-Moreno, A., da Silva Neto, A.J., Llanes-Santiago, O.: An approach to robust fault diagnosis in mechanical systems using computational intelligence. J. Intell. Manuf. 30(4), 1601–1615 (2017). https://doi.org/10.1007/s10845-017-1343-1
Saufi, S.R., Ahmad, Z.A.B., Leong, M.S., Lim, M.H.: Gearbox fault diagnosis using a deep learning model with limited data sample. IEEE Trans. Industr. Inf. 16(10), 6263–6271 (2020). https://doi.org/10.1109/TII.2020.2967822
Ustundag, A., Cevikcan, E.: Industry 4.0: Managing the Digital Transformation. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57870-5
Watanabe, K., Matsuura, I., Abe, M., Kubota, M., Himmelblau, D.M.: Incipient fault diagnosis of chemical processes via artificial neural networks. AIChE J. 35(11), 1803–1812 (1989). https://doi.org/10.1002/aic.690351106
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ortiz Ortiz, F.J., Rodríguez-Ramos, A., Llanes-Santiago, O. (2022). A Robust Fault Diagnosis Method in Presence of Noise and Missing Information for Industrial Plants. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-07750-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07749-4
Online ISBN: 978-3-031-07750-0
eBook Packages: Computer ScienceComputer Science (R0)