Skip to main content

Towards XAI: Interpretable Shallow Neural Network Used to Model HCP’s fMRI Motor Paradigm Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

Under the concept of explainable artificial intelligence (XAI), this study explores the usage of shallow neural networks (SNN) to model and predict motor processes in the brain. Two main goals are considered: the suitability of independent component analysis (ICA) for data dimension reduction; and the capability of the SNN to have its underlying processes explained while retaining accurate predictions.

Thirty subjects from the HCP Young Adult database are used. A traditional GLM-based data analysis is carried out aiming to establish a ground for comparison, besides founded neuroscientific knowledge. ICA is used for input data dimensionality reduction, which feeds an SNN with one hidden layer containing 10 nodes. Accuracies range from 67.5% to 92.5%, and precisions from 64.3% to 97.2%, per stimulus. The analysis of the weights yields independent components (ICs), i.e. inputs, that encompass motor areas. Even though the ICs’ spatial resolution is not optimal, the SNN predicts well above the chance level.

The motor cortex-containing ICs, i.e. the main inputs, are in accordance with the founded neuroscientific knowledge and the GLM-based data analysis results, allowing for the interpretability of the SNN underlying processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.humanconnectome.org/study/hcp-young-adult.

  2. 2.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL.

  3. 3.

    https://www.r-project.org/.

  4. 4.

    https://www.rstudio.com/.

References

  1. Samek, W., Müller, K.-R.: Towards explainable artificial intelligence. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence) LNCS. (LNAI), vol. 11700, pp. 5–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_1

    Chapter  Google Scholar 

  2. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2021). https://doi.org/10.1109/TNNLS.2020.3027314

    Article  PubMed  Google Scholar 

  3. Adadi, A., Berrada, M.: peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052

    Article  Google Scholar 

  4. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: The WU-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.041

    Article  PubMed  Google Scholar 

  5. Hanson, S.J., Matsuka, T., Haxby, J.V.: Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? Neuroimage 23, 156–166 (2004). https://doi.org/10.1016/j.neuroimage.2004.05.020

    Article  PubMed  Google Scholar 

  6. Misaki, M., Miyauchi, S.: Application of artificial neural network to fMRI regression analysis. Neuroimage 29, 396–408 (2006). https://doi.org/10.1016/j.neuroimage.2005.08.002

    Article  PubMed  Google Scholar 

  7. Santos, J.P., Moutinho, L.: Tackling the cognitive processes that underlie brands’ assessments using artificial neural networks and whole brain fMRI acquisitions. In: 2011 IEEE International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 9–12. IEEE Computer Society, Seoul, Republic of Korea (2011)

    Google Scholar 

  8. Marques dos Santos, J.P., Moutinho, L., Castelo-Branco, M.: ‘Mind reading’: hitting cognition by using ANNs to analyze fMRI data in a paradigm exempted from motor responses. In: International Workshop on Artificial Neural Networks and Intelligent Information Processing (ANNIIP 2014), pp. 45–52. Scitepress (Scienceand Technology Publications, Lda.), Vienna, Austria (2014)

    Google Scholar 

  9. Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004). https://doi.org/10.1109/TMI.2003.822821

    Article  PubMed  Google Scholar 

  10. Van Essen, D.C., Glasser, M.F.: The human connectome project: progress and prospects. Cerebrum 2016, cer-10–16 (2016)

    Google Scholar 

  11. Elam, J.S., et al.: The human connectome project: a retrospective. Neuroimage 244, 118543 (2021). https://doi.org/10.1016/j.neuroimage.2021.118543

    Article  CAS  PubMed  Google Scholar 

  12. Buckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C., Yeo, B.T.T.: The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011). https://doi.org/10.1152/jn.00339.2011

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yeo, B.T.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011). https://doi.org/10.1152/jn.00338.2011

    Article  PubMed  Google Scholar 

  14. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62, 782–790 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  15. Jenkinson, M., Smith, S.M.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001). https://doi.org/10.1016/S1361-8415(01)00036-6

    Article  CAS  PubMed  Google Scholar 

  16. Jenkinson, M., Bannister, P.R., Brady, J.M., Smith, S.M.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002). https://doi.org/10.1016/S1053-8119(02)91132-8

    Article  PubMed  Google Scholar 

  17. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002). https://doi.org/10.1002/hbm.10062

    Article  PubMed  PubMed Central  Google Scholar 

  18. Woolrich, M.W., Ripley, B.D., Brady, J.M., Smith, S.M.: Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386 (2001). https://doi.org/10.1006/nimg.2001.0931

    Article  CAS  PubMed  Google Scholar 

  19. Worsley, K.J.: Statistical analysis of activation images. In: Jezzard, P., Matthews, P.M., Smith, S.M. (eds.) Functional MRI: An Introduction to Methods, pp. 251–270. Oxford University Press, New York (2001)

    Google Scholar 

  20. Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Jenkinson, M., Smith, S.M.: Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21, 1732–1747 (2004). https://doi.org/10.1016/j.neuroimage.2003.12.023

    Article  PubMed  Google Scholar 

  21. Beckmann, C.F., Jenkinson, M., Smith, S.M.: General multilevel linear modeling for group analysis in FMRI. Neuroimage 20, 1052–1063 (2003). https://doi.org/10.1016/S1053-8119(03)00435-X

    Article  PubMed  Google Scholar 

  22. Minka, T.P.: Automatic choice of dimensionality for PCA. Technical Report 514. MIT Media Lab Vision and Modeling Group, MIT (2000)

    Google Scholar 

  23. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999). https://doi.org/10.1109/72.761722

    Article  PubMed  Google Scholar 

  24. Buckner, R.L.: Event-related fMRI and the hemodynamic response. Hum. Brain Mapp. 6, 373–377 (1998). https://doi.org/10.1002/(SICI)1097-0193(1998)6:5/6%3c373::AID-HBM8%3e3.0.CO;2-P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Limas, M.C., Meré, J.B.O., Marcos, A.G., Ascacibar, F.J.M.d.P., Espinoza, A.V.P., Elías, F.A.: AMORE: A more flexible neural network package. León (2010)

    Google Scholar 

  26. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2010)

    Google Scholar 

  27. Penfield, W., Boldrey, E.: Somatic motor and sensory representation in the cerbral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937). https://doi.org/10.1093/brain/60.4.389

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially financially supported by Base Funding - UIDB/00027/2020 of the Artificial Intelligence and Computer Science Laboratory – LIACC - funded by national funds through the FCT/MCTES (PIDDAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Paulo Marques dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marques dos Santos, J.D., Marques dos Santos, J.P. (2022). Towards XAI: Interpretable Shallow Neural Network Used to Model HCP’s fMRI Motor Paradigm Data. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics