Skip to main content

Sperm-cell Detection Using YOLOv5 Architecture

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13347))

Abstract

Infertility has become a severe health issue in recent years. Sperm morphology, sperm motility, and sperm density are the most critical factors in male infertility. As a result, sperm motility, density, and morphology are examined in semen analysis carried out by laboratory professionals. However, applying a subjective analysis based on laboratory observation is easy to make a mistake. To reduce the effect of specialists in semen analysis, a computer-aided sperm count estimation approach is proposed in this work. The quantity of active sperm in the semen is determined using object detection methods focusing on sperm motility. The proposed strategy was tested using data from the Visem dataset provided by Association for Computing Machinery. We created a small sample custom dataset to prove that our network will be able to detect sperms in images. The best not-super tuned result is mAP 72.15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auger, J., et al.: Intra- and inter-individual variability in human sperm concentration, motility and vitality assessment during a workshop involving ten laboratories. 15(11), 2360–2368 (2000). https://doi.org/10.1093/humrep/15.11.2360

  2. Boivin, J., Bunting, L., Collins, J.A., Nygren, K.G.: International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care, 22(6), 1506–1512 (2007). https://doi.org/10.1093/humrep/dem046

  3. Broekhuijse, M.L.W.J., Šoštarić, E., Feitsma, H., Gadella, B.M.: Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination, 76(8), 1473–1486.e1 (2011). https://www.sciencedirect.com/science/article/pii/S0093691X11003001

  4. Dobrovolny, M., Mls, K., Krejcar, O., Mambou, S., Selamat, A.: Medical image data upscaling with generative adversarial networks. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 739–749. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_66

    Chapter  Google Scholar 

  5. García-Olalla, O., Alegre, E., Fernández-Robles, L., Malm, P., Bengtsson, E.: Acrosome integrity assessment of boar spermatozoa images using an early fusion of texture and contour descriptors, 120(1), 49–64 (2015). https://www.sciencedirect.com/science/article/pii/S0169260715000590

  6. Gumuscu, A., Tenekeci, M.E.: Estimation of active sperm count in spermiogram using motion detection methods, 34(3), 1274–1280 (2019). https://www.webofscience.com/wos/woscc/full-record/WOS:000469481500012. Faculty Engineering Architecture, Gazi University, Ankara

  7. Haugen, T.B., et al.: VISEM: a multimodal video dataset of human spermatozoa. In: Proceedings of the 10th ACM Multimedia Systems Conference, pp. 261–266. ACM (2019). https://dl.acm.org/doi/10.1145/3304109.3325814

  8. Hidayatullah, P., Mengko, T.L.E.R., Munir, R., Barlian, A.: Bull sperm tracking and machine learning-based motility classification, 9, 61159–61170 (2021). IEEE Access

    Google Scholar 

  9. Hidayatullah, P., et al.: DeepSperm: a robust and real-time bull sperm-cell detection in densely populated semen videos, 209, 106302 (2021). https://www.sciencedirect.com/science/article/pii/S016926072100376X

  10. Hoogewijs, M.K., De Vliegher, S.P., Govaere, J.L., De Schauwer, C., De Kruif, A., Van Soom, A.: Influence of counting chamber type on CASA outcomes of equine semen analysis, 44(5), 542–549 (2012). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2042-3306.2011.00523.x, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2042-3306.2011.00523.x

  11. Iguer-ouada, M., Verstegen, J.P.: Evaluation of the “hamilton thorn computer-based automated system” for dog semen analysis, 55(3), 733–749 (2001). https://www.sciencedirect.com/science/article/pii/S0093691X0100440X

  12. Imani, Y., Teyfouri, N., Ahmadzadeh, M.R., Golabbakhsh, M.: A new method for multiple sperm cells tracking, 4(1), 35 (2014). https://www.jmssjournal.net/article.asp?issn=2228-7477;year=2014;volume=4;issue=1;spage=35;epage=42;aulast=Imani;type=0, Medknow Publications and Media Pvt. Ltd

  13. Jati, G., Gunawan, A.A.S., Lestari, S.W., Jatmiko, W., Hilman, M.H.: Multi-sperm tracking using Hungarian Kalman filter on low frame rate video. In: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 530–535 (2016)

    Google Scholar 

  14. Kucuk, N.: Sperm DNA and detection of DNA fragmentations in sperm, 44(1), 1–5 (2018). https://www.webofscience.com/wos/woscc/full-record/WOS:000422986400002, Aves, Sisli

  15. Lin, T.Y., et al.: Microsoft COCO: common objects in context http://arxiv.org/abs/1405.0312 (2014)

  16. Maduro, M.R., Lamb, D.J.: Understanding new genetics of male infertility, 168(5), 2197–2205 (2002). https://www.sciencedirect.com/science/article/pii/S0022534705643558

  17. Mambou, S., Krejcar, O., Selamat, A., Dobrovolny, M., Maresova, P., Kuca, K.: Novel thermal image classification based on techniques derived from mathematical morphology: case of breast cancer. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 683–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_61

    Chapter  Google Scholar 

  18. Martin, R.: Detection of genetic-damage in human sperm, 7, 47–52 (1993). https://www.webofscience.com/wos/woscc/full-record/WOS:A1993LU30500006, Pergamon-Elsevier Science Ltd., Oxford

  19. Schmidt, L.: Psychosocial consequences of infertility and treatment. In: Carrell, D.T., Peterson, C.M. (eds.) Reproductive Endocrinology and Infertility: Integrating Modern Clinical and Laboratory Practice, pp. 93–100. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1436-1_7

  20. Hidayatullah, P., Mengko, T.L.E.R., Munir, R.: A survey on multisperm tracking for sperm motility measurement, 7(5), 144–151 (2017). School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, Jawa Barat, Indonesia. http://www.ijmlc.org/vol7/637-C46.pdf

  21. Silva, P.F.N., Gadella, B.M.: Detection of damage in mammalian sperm cells, 65(5), 958–978 (2006). https://www.webofscience.com/wos/woscc/full-record/WOS:000236041300006, Elsevier Science Inc., New York

  22. Suttipasit, P.: Forensic spermatozoa detection, 40(4), 304–311 (2019). https://www.webofscience.com/wos/woscc/full-record/WOS:000499474800001, Lippincott Williams & Wilkins, Philadelphia

  23. Sørensen, L., Østergaard, J., Johansen, P., Bruijne, M.d.: Multi-object tracking of human spermatozoa. In: Medical Imaging 2008: Image Processing, vol. 6914, pp. 784–795 (2008). SPIE, https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6914/69142C/Multi-object-tracking-of-human-spermatozoa/10.1117/12.771135.full

  24. Wang, C.Y., Liao, H.Y.M., Yeh, I.H., Wu, Y.H., Chen, P.Y., Hsieh, J.W.: CSPNet: a new backbone that can enhance learning capability of CNN (2020). http://arxiv.org/abs/1911.11929

  25. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment (2019). http://arxiv.org/abs/1908.06391

  26. World Health Organization: Regional Office for the Eastern Mediterranean: List of basic sources in English for a medical faculty library (2013). https://apps.who.int/iris/handle/10665/119927, section: vi, 133 p.; 30 cm

  27. Xu, R., Lin, H., Lu, K., Cao, L., Liu, Y.: A forest fire detection system based on ensemble learning, 12, 217 (2021)

    Google Scholar 

Download references

Acknowledgement

The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-FIM-SPEV-2022-2102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Dobrovolny .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobrovolny, M., Benes, J., Krejcar, O., Selamat, A. (2022). Sperm-cell Detection Using YOLOv5 Architecture. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics