Skip to main content

Human Multi-omics Data Pre-processing for Predictive Purposes Using Machine Learning: A Case Study in Childhood Obesity

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

The Machine Learning applications in the medical field using omics data are countless and promising, highlighting the possibility of creating long-term predictive models for highly prevalent diseases. Nevertheless, to take advantage of the virtues of omics data and machine learning tools, we first need to perform adequate data pre-processing just as taking some considerations for the constructions of the models. The present paper is an example of how to face the main challenges encountered when constructing machine learning predictive models with multi-omics human data. Some topics covered in this work include a description of the main particularities of each omics data layer, the most appropriate pre-processing approaches for each source, and a collection of good practices and tips for applying machine learning to this kind of data with predictive purposes. Using real data examples (blood samples), we illustrate how some of the key issues are addressed in this kind of research (technical noise, biological heterogeneity, class imbalance, high dimensionality, and presence of missing values, among others). Additionally, we set the basis for future work incorporating some proposals to improve models, arguing their need according to encountered insights.

Supported organization in part by ERDF/Regional Government of Andalusia/Ministry of Economic Transformation, Industry, Knowledge and Universities (grant numbers P18-RT-2248 and B-CTS-536-UGR20) and by the ERDF/Health Institute Carlos III/Spanish Ministry of Science, Innovation and Universities (grant number PI20/00711, PI16/00871 and PI20/00563).

Á. Torres-Martos and A. Anguita-Ruiz—Equal contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anguita-Ruiz, A.: Multi-omics integration and machine learning for the identification of molecular markers of insulin resistance in prepubertal and pubertal children with obesity (2021)

    Google Scholar 

  2. Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). https://doi.org/10.1016/J.INFFUS.2019.12.012

    Article  Google Scholar 

  3. Browning, B.L., Tian, X., Zhou, Y., Browning, S.R.: Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genetics 108(10), 1880–1890 (2021). https://doi.org/10.1016/J.AJHG.2021.08.005

    Article  CAS  Google Scholar 

  4. Deelen, P., et al.: Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration. BMC. Res. Notes 7(1), 1–4 (2014). https://doi.org/10.1186/1756-0500-7-901

    Article  CAS  Google Scholar 

  5. Fernández-Delgado, M., et al.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014). https://jmlr.org/papers/v15/delgado14a.html

  6. Fortin, J.P., et al.: Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 15(12) (2014). https://doi.org/10.1186/S13059-014-0503-2

  7. Goecks, J., et al.: How machine learning will transform biomedicine. Cell 181(1), 92–101 (2020). https://doi.org/10.1016/J.CELL.2020.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodarzi, M.O.: Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 6(3), 223–236 (2018). https://doi.org/10.1016/S2213-8587(17)30200-0

    Article  CAS  PubMed  Google Scholar 

  9. Hvitfeldt, E.: themis: Extra Recipes Steps for Dealing with Unbalanced Data (2020) https://CRAN.R-project.org/package=themis, r package version 0.1.0

  10. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning - with Applications in R (2013). https://doi.org/10.1007/978-1-4614-7138-7

  11. Mahajan, A., et al.: Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes article. Nat. Genet. 50(4), 559–571 (2018). https://doi.org/10.1038/s41588-018-0084-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maksimovic, J., Phipson, B., Oshlack, A.: A cross-package Bioconductor workflow for analysing methylation array data. F1000Research 5 (2016). https://doi.org/10.12688/F1000RESEARCH.8839.3

  13. Purcell, S., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559 (2007). https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rohart, F., Gautier, B., Singh, A., Le, C.: mixomics: an r package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. 13(11), e1005752 (2017). https://doi.org/10.1371/journal.pcbi.1005752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saxena, R., et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829), 1331–1336 (2007). https://doi.org/10.1126/science.1142358

    Article  CAS  PubMed  Google Scholar 

  16. Scott, L.J., et al.: A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science 316(5829), 1341–1345 (2007). https://doi.org/10.1126/science.1142382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scott, R.A., et al.: An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66(11), 2888–2902 (2017). https://doi.org/10.2337/db16-1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh, A., et al.: DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35(17), 3055–3062 (2019). https://doi.org/10.1093/BIOINFORMATICS/BTY1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sladek, R., et al.: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130), 881–885 (2007). https://doi.org/10.1038/nature05616

    Article  CAS  PubMed  Google Scholar 

  20. Stekhoven, D.J., Bühlmann, P.: MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2012). https://doi.org/10.1093/BIOINFORMATICS/BTR597

    Article  CAS  PubMed  Google Scholar 

  21. Teschendorff, A.E., et al.: A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29(2), 189–196 (2013). https://doi.org/10.1093/BIOINFORMATICS/BTS680

    Article  CAS  PubMed  Google Scholar 

  22. Van Buuren, S.: Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16(3), 219–242 (2007). https://doi.org/10.1177/0962280206074463

    Article  PubMed  Google Scholar 

  23. Zhao, W., et al.: Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 49(10), 1450–1457 (2017). https://doi.org/10.1038/ng.3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Álvaro Torres-Martos , Augusto Anguita-Ruiz , Mireia Bustos-Aibar , Sofia Cámara-Sánchez or Concepción M. Aguilera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torres-Martos, Á. et al. (2022). Human Multi-omics Data Pre-processing for Predictive Purposes Using Machine Learning: A Case Study in Childhood Obesity. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics