Skip to main content

Investigating Sources of Zeros in 10× Single-Cell RNAseq Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

Single-cell RNA sequencing allows expression profiling of hundreds of thousands of individual cells in a single experiment. The main drawback is that on the single-cell level observed proportion of zero counts is much higher than on the bulk level. In this study, we performed the analysis of potential sources of excessive zeros using multi-omics data from a homogenous breast cancer cell line. A comparison of the expression data at the population and single-cell level showed that variability between sequencing platforms is higher than when comparing replicates on the same platform. The non-linear model was used to estimate the difference in the expected and observed number of zeros per gene. Then, using gene set enrichment analysis, we discovered some biological pathways containing genes with an increased or reduced number of zeros, like ribosomal genes. Finally, we analyzed different technical factors potentially influencing the dropout rate, and found that the number of transcripts per gene, low mappability and difference in transcript coverage uniformity might cause fluctuations in gene expression estimate on a single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding, J., et al.: Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zheng, G.X.Y., et al.: Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buettner, F., et al.: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Ziegenhain, C., et al.: Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631-643.e634 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, R., Sun, T., Song, D., Li, J.J.: Statistics or biology: the zero-inflation controversy about scRNA-seq data. Genome Biol. 23, 31 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Silverman, J.D., Roche, K., Mukherjee, S., David, L.A.: Naught all zeros in sequence count data are the same. Comput. Struct. Biotechnol. J. 18, 2789–2798 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaksik, R., Marczyk, M., Polanska, J., Rzeszowska-Wolny, J.: Sources of High variance between probe signals in affymetrix short oligonucleotide microarrays. Sensors (Basel) 14, 532–548 (2013)

    Article  Google Scholar 

  8. Van den Berge, K., et al.: Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications. Genome Biol. 19, 24 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marczyk, M., et al.: Multi-omics investigation of innate navitoclax resistance in triple-negative breast cancer cells. Cancers 12, 2551 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  10. Buenrostro, J.D., Wu, B., Chang, H.Y., Greenleaf, W.J.: ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109(1), 21.29.1–21.29.9 (2015)

    Google Scholar 

  11. Zyla, J., Marczyk, M., Domaszewska, T., Kaufmann, S.H.E., Polanska, J., Weiner, J.: Gene set enrichment for reproducible science: comparison of CERNO and eight other algorithms. Bioinformatics 35, 5146–5154 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Korotkevich, G., Sukhov, V., Sergushichev, A.: Fast gene set enrichment analysis. bioRxiv 060012 (2019)

    Google Scholar 

  14. Wang, L., et al.: Measure transcript integrity using RNA-seq data. BMC Bioinf. 17, 58 (2016)

    Article  Google Scholar 

  15. Zerbino, D.R., et al.: Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018)

    Article  CAS  PubMed  Google Scholar 

  16. Karimzadeh, M., Ernst, C., Kundaje, A., Hoffman, M.M.: Umap and Bismap: quantifying genome and methylome mappability. Nucleic Acids Res. 46, e120 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financed by the Silesian University of Technology grant no. 02/070/BK22/0033 for maintaining and developing research potential (MM, JZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Marczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Slowik, H., Zyla, J., Marczyk, M. (2022). Investigating Sources of Zeros in 10× Single-Cell RNAseq Data. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics