Skip to main content

Toward an Automatic Assistance Framework for the Selection and Configuration of Machine Learning Based Data Analytics Solutions in Industry 4.0

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 489))

Abstract

Machine Learning (ML) based data analytics provide methods to cope with the massive data amounts, generated by the various manufacturing processes. In this respect, the maintenance is among the most critical activities concerned by the industrial data analytics in the contexts of industry 4.0. We believe that the maintenance activities can be managed by the predictive processes dwelling on ML methods with the help of meta-learning based data analytics solutions. The challenge is then to facilitate the industry 4.0 actors, who are supposedly not AI specialists, with the application of machine learning. The automated machine learning seems to be the area dealing with this challenge. In this paper, we first show the problematic of assisting industry 4.0 actors to implement ML algorithms in the context of predictive maintenance. We then present a novel AutoML based framework. It aims to enable industry 4.0 actors and researchers, who presumably have limited competencies in machine learning, to generate ML-based data analytics solutions and their deployment in the manufacturing workflows. The framework implements primarily the approaches based on the meta-learning for this purpose. In the context of Industry 4.0 such approaches lead to the implementation of the smart factory concepts. It makes the factory processes more proactive on the basis of predictive knowledge extracted from the various manufacturing devices, sensors, and business processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Usuga Cadavid, J.P., et al.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31(6), 1531–1558 (2020). https://doi.org/10.1007/s10845-019-01531-7

    Article  Google Scholar 

  2. Wolf, H., et al.: Bringing advanced analytics to manufacturing: a systematic mapping. In: Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.) APMS 2019. IAICT, vol. 566, pp. 333–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5_42

    Chapter  Google Scholar 

  3. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning. TSSCML, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

    Book  Google Scholar 

  4. Mustafa, A., Rahimi Azghadi, M.: Automated machine learning for healthcare and clinical notes analysis. Computers 10(2), 24 (2021). https://doi.org/10.3390/computers10020024

    Article  Google Scholar 

  5. Garouani, M., et al.: AMLBID: an auto-explained automated machine learning tool for big industrial data. SoftwareX 17, 100919 (2022). https://doi.org/10.1016/j.softx.2021.100919

  6. Garouani, M., et al.: Towards big industrial data mining through explainable automated machine learning. Int. J. Adv. Manuf. Technol. 120, 1169–1188 (2022). https://doi.org/10.1007/s00170-022-08761-9

    Article  Google Scholar 

  7. Thornton, C., et al.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 847–855. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2487575.2487629

  8. Olson, R.S., Moore, J.H.: TPOT: a tree-based pipeline optimization tool for automating machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_8

    Chapter  Google Scholar 

  9. RapidMiner—Best Data Science & Machine Learning Platform. Rapid-Miner. https://rapidminer.com/

  10. Yang, C., et al.: OBOE: collaborative filtering for AutoML model selection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1173–1183 (2019). https://doi.org/10.1145/3292500.3330909

  11. Guyon, I., et al.: Analysis of the AutoML challenge series 2015–2018. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 177–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_10

    Chapter  Google Scholar 

  12. Feurer, M., et al.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 113–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_6

    Chapter  Google Scholar 

  13. Drori, I., et al.: AlphaD3M machine learning pipeline synthesis (2018)

    Google Scholar 

  14. Luo, G.: PredicT-ML: a tool for automating machine learning model building with big clinical data. Health Inf. Sci. Syst. 4(1), 5 (2016). https://doi.org/10.1186/s13755-016-0018-1

    Article  Google Scholar 

  15. Katz, G., Shin, E.C., Song, D.: ExploreKit: automatic feature generation and selection. In: 2016 IEEE 16th International Conference on Data Mining (ICDM) (2016). https://doi.org/10.1109/ICDM.2016.0123

  16. Nargesian, F., et al.: Learning feature engineering for classification, pp. 2529–2535 (2017)

    Google Scholar 

  17. Garouani, M., et al.: Towards the automation of industrial data science: a meta-learning based approach. In: 23rd International Conference on Enterprise Information Systems, pp. 709–716 (2021). https://doi.org/10.5220/0010457107090716

  18. Reif, M., et al.: Automatic classifier selection for non-experts. Pattern Anal. Appl. 17(1), 83–96 (2012). https://doi.org/10.1007/s10044-012-0280-z

    Article  MathSciNet  Google Scholar 

  19. Wang, Q., et al.: ATMSeer: increasing transparency and controllability in automated machine learning. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, pp. 1–12. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290605.3300911

  20. H2O.Ai—AI Cloud Platform. H2O.ai. https://www.h2o.ai/

  21. AutoML Tables. Google Cloud. https://cloud.google.com/automl-tables/docs

  22. Muñoz, M.A., et al.: Algorithm selection for black-box continuous optimization problems: a survey on methods and challenges. Inf. Sci. 317, 224–245 (2015). https://doi.org/10.1016/j.ins.2015.05.010

    Article  Google Scholar 

  23. Bilalli, B.: Learning the Impact of Data Pre-processing in Data Analysis. Universitat Politècnica de Catalunya, Barcelona (2018)

    Google Scholar 

  24. Samek, W., Müller, K.-R.: Towards explainable artificial intelligence. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 5–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_1

    Chapter  Google Scholar 

  25. Villanueva Zacarias, A.G., Reimann, P., Mitschang, B.: A framework to guide the selection and configuration of machine-learning-based data analytics solutions in manufacturing. In: Procedia CIRP, 51st CIRP Conference on Manufacturing Systems, vol. 72, pp. 153–158 (2018). https://doi.org/10.1016/j.procir.2018.03.215

  26. Lechevalier, D., et al.: A methodology for the semi-automatic generation of analytical models in manufacturing. Comput. Ind. 95, 54–67 (2018). https://doi.org/10.1016/j.compind.2017.12.005

    Article  Google Scholar 

  27. Mazumder, R.K., Salman, A.M., Li, Y.: Failure risk analysis of pipelines using data-driven machine learning algorithms. Struct. Saf. 89, 102047 (2021). https://doi.org/10.1016/j.strusafe.2020.102047

  28. Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S.: Health assessment and life prediction of cutting tools based on support vector regression. J. Intell. Manuf. 26(2), 213–223 (2013). https://doi.org/10.1007/s10845-013-0774-6

    Article  Google Scholar 

  29. Costa, C.F., Nascimento, M.A.: IDA 2016 industrial challenge: using machine learning for predicting failures. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds.) IDA 2016. LNCS, vol. 9897, pp. 381–386. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46349-0_33

    Chapter  Google Scholar 

  30. Saravanamurugan, S., et al.: Chatter prediction in boring process using machine learning technique. Int. J. Manuf. Res. (2017). https://doi.org/10.1504/IJMR.2017.10007082

  31. Garouani, M., Ahmad, A., Bouneffa, M., Hamlich, M., Bourguin, G., Lewandowski, A.: Towards meta-learning based data analytics to better assist the domain experts in industry 4.0. In: Dang, N.H.T., Zhang, Y.D., Tavares, J.M.R.S., Chen, B.H. (eds.) ICABDE 2021. LNDECT, vol. 124, pp. 265–277. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97610-1_22

    Chapter  Google Scholar 

  32. Garouani, M., et al.: Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data. J. Big Data 9, 57 (2022). https://doi.org/10.1186/s40537-022-00612-4

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported, in part, by Hestim, CNRST Morocco, and University of the Littoral Cote d’Opale, Calais France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Garouani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garouani, M., Hamlich, M., Ahmad, A., Bouneffa, M., Bourguin, G., Lewandowski, A. (2022). Toward an Automatic Assistance Framework for the Selection and Configuration of Machine Learning Based Data Analytics Solutions in Industry 4.0. In: Lazaar, M., Duvallet, C., Touhafi, A., Al Achhab, M. (eds) Proceedings of the 5th International Conference on Big Data and Internet of Things. BDIoT 2021. Lecture Notes in Networks and Systems, vol 489. Springer, Cham. https://doi.org/10.1007/978-3-031-07969-6_1

Download citation

Publish with us

Policies and ethics