Abstract
Embarrassingly Parallel Search (EPS) parallelizes the search for solutions in CP by decomposing the initial problem into a huge number of sub-problems that are consistent with propagation. Then, each waiting worker takes a sub-problem and solves it. The process is repeated until all the sub-problems have been solved. EPS is based on the idea that if there are many sub-problems to solve then the solving times of the workers will be balanced even if the solving times of the sub-problems are not. This approach gives rather good results for solving the Traveling Salesman Problem (TSP). Unfortunately, for some instances, sub-problems with extremely different solving times appear, for example one requiring a huge part of the total solving time. In this case the load balancing is poor. We show that a general increase in the number of sub-problems does not solve this imbalance. We present a method that identifies the presence of difficult sub-problems during the solving process and decompose them again. This method keeps the advantages of EPS: the communication is very reduced (the workers do not communicate with each other) and it is independent of the solver. Experimental results for the TSP show a good improvement of load balancing and a better scaling with hundred of cores.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Burton, F.W., Sleep, M.R.: Executing functional programs on a virtual tree of processors. In: Proceedings of the 1981 Conference on Functional Programming Languages and Computer Architecture, FPCA 1981, pp. 187–194. ACM, New York (1981)
Fages, J., Lorca, X., Rousseau, L.: The salesman and the tree: the importance of search in CP. Constraints 21(2), 145–162 (2016)
Galea, F., Le Cun, B.: Bob++: a framework for exact combinatorial optimization methods on parallel machines. In: International Conference High Performance Computing & Simulation 2007 (HPCS 2007) and in conjunction with The 21st European Conference on Modeling and Simulation (ECMS 2007), pp. 779–785, June 2007
Halstead, R.: Implementation of multilisp: lisp on a multiprocessor. In: Proceedings of the 1984 ACM Symposium on LISP and Functional Programming, LFP 1984, pp. 9–17. ACM, New York (1984)
Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)
Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970)
Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part II. Math. Program. 1(1), 6–25 (1971)
Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)
Isoart, N.: The traveling salesman problem in constraint programming. Ph.D. thesis, Université Côte d’Azur (2021)
Isoart, N., Régin, J.-C.: Integration of structural constraints into TSP models. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 284–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_17
Isoart, N., Régin, J.-C.: Adaptive CP-based Lagrangian relaxation for TSP solving. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp. 300–316. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4_20
Isoart, N., Régin, J.-C.: Parallelization of TSP solving in CP. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 410–426. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_24
Isoart, N., Régin, J.: A k-opt based constraint for the TSP. In: Michel, L.D. (ed.) 27th International Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), 25–29 October 2021. LIPIcs, vol. 210, pp. 30:1–30:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
Isoart, N., Régin, J.: A linear time algorithm for the k-cutset constraint. In: Michel, L.D. (ed.) 27th International Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), 25–29 October 2021. LIPIcs, vol. 210, pp. 29:1–29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
Korf, R.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27, 97–109 (1985)
Le Cun, B., Menouer, T., Vander-Swalmen, P.: Bobpp (2007). http://forge.prism.uvsq.fr/projects/bobpp
Lecoutre, C., Sais, L., Tabary, S., Vidal, V., et al.: Nogood recording from restarts. In: IJCAI, vol. 7, pp. 131–136 (2007)
Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in constraint programming. Artif. Intell. 173(18), 1592–1614 (2009)
Lee, J., Schulte, C., Zhu, Z.: Increasing nogoods in restart-based search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)
Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)
Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search in constraint programming. J. Artif. Intell. Res. (JAIR) 57, 421–464 (2016)
Perron, L.: Search procedures and parallelism in constraint programming. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–360. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48085-3_25
Régin, J.-C., Malapert, A.: Parallel constraint programming. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 337–379. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3_9
Régin, J.-C., Rezgui, M., Malapert, A.: Improvement of the embarrassingly parallel search for data centers. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 622–635. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_45
Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_45
Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)
Vidal, V., Bordeaux, L., Hamadi, Y.: Adaptive K-parallel best-first search: a simple but efficient algorithm for multi-core domain-independent planning. In: Proceedings of the Third International Symposium on Combinatorial Search. AAAI Press (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Isoart, N., Régin, JC. (2022). Improving the Robustness of EPS to Solve the TSP. In: Schaus, P. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2022. Lecture Notes in Computer Science, vol 13292. Springer, Cham. https://doi.org/10.1007/978-3-031-08011-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-08011-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08010-4
Online ISBN: 978-3-031-08011-1
eBook Packages: Computer ScienceComputer Science (R0)