Skip to main content

Model-Based Algorithm Configuration with Adaptive Capping and Prior Distributions

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2022)

Abstract

Many advanced solving algorithms for constraint programming problems are highly configurable. The research area of algorithm configuration investigates ways of automatically configuring these solvers in the best manner possible. In this paper, we specifically focus on algorithm configuration in which the objective is to decrease the time it takes the solver to find an optimal solution. In this setting, adaptive capping is a popular technique which reduces the overall runtime of the search for good configurations by adaptively setting the solver’s timeout to the best runtime found so far. Additionally, sequential model-based optimization (SMBO)—in which one iteratively learns a surrogate model that can predict the runtime of unseen configurations—has proven to be a successful paradigm. Unfortunately, adaptive capping and SMBO have thus far remained incompatible, as in adaptive capping, one cannot observe the true runtime of runs that time out, precluding the typical use of SMBO. To marry adaptive capping and SMBO, we instead use SMBO to model the probability that a configuration will improve on the best runtime achieved so far, for which we propose several decomposed models. These models also allow defining prior probabilities for each hyperparameter. The experimental results show that our DeCaprio method speeds up hyperparameter search compared to random search and the seminal adaptive capping approach of ParamILS.

Ignace Bleukx and Senne Berden—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DEcomposable adaptive CApping with PRIOrs.

  2. 2.

    From Håkan Kjellerstrand’s collection: http://www.hakank.org/cpmpy/.

  3. 3.

    The number of threads was limited to 1 for every solver call.

  4. 4.

    https://github.com/ML-KULeuven/DeCaprio.

References

  1. Anastacio, M., Hoos, H.: Model-based algorithm configuration with default-guided probabilistic sampling. In: Bäck, T. (ed.) PPSN 2020. LNCS, vol. 12269, pp. 95–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_7

    Chapter  Google Scholar 

  2. Bergstra, J., Bengio, Y.: Algorithms for hyper-parameter optimization. In: In NIPS, pp. 2546–2554 (2011)

    Google Scholar 

  3. Cáceres, L.P., López-Ibáñez, M., Hoos, H., Stützle, T.: An experimental study of adaptive capping in irace. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) LION 2017. LNCS, vol. 10556, pp. 235–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69404-7_17

    Chapter  Google Scholar 

  4. De Souza, M., Ritt, M., López-Ibáñez, M.: Capping methods for the automatic configuration of optimization algorithms. Comput. Oper. Res. 139, 105615 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fichte, J.K., Hecher, M., McCreesh, C., Shahab, A.: Complications for computational experiments from modern processors. In: 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  6. Guns, T.: Increasing modeling language convenience with a universal n-dimensional array, cppy as python-embedded example. In: Proceedings of the 18th workshop on Constraint Modelling and Reformulation, Held with CP, vol. 19 (2019)

    Google Scholar 

  7. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)

    Article  MATH  Google Scholar 

  8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_23

    Chapter  Google Scholar 

  9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, pp. 507–523. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  11. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019). https://doi.org/10.1162/evco_a_00242

    Article  Google Scholar 

  12. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

  13. Perron, L., Furnon, V.: Or-tools. https://developers.google.com/optimization/

  14. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperparameter tuning. In: Artificial Intelligence and Statistics, pp. 1077–1085. PMLR (2014)

    Google Scholar 

Download references

Acknowledgments

This research was partly funded by the Flemish Government (AI Research Program), the Research Foundation - Flanders (FWO) projects G0G3220N and S007318N and the European Research Council (ERC) under the EU Horizon 2020 research and innovation programme (Grant No 101002802, CHAT-Opt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignace Bleukx .

Editor information

Editors and Affiliations

A Adapted SMBO

A Adapted SMBO

figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bleukx, I., Berden, S., Coenen, L., Decleyre, N., Guns, T. (2022). Model-Based Algorithm Configuration with Adaptive Capping and Prior Distributions. In: Schaus, P. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2022. Lecture Notes in Computer Science, vol 13292. Springer, Cham. https://doi.org/10.1007/978-3-031-08011-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08011-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08010-4

  • Online ISBN: 978-3-031-08011-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics