Skip to main content

Optimization of Green Mobile Cloud Computing

  • Chapter
  • First Online:
Green Mobile Cloud Computing

Abstract

Mobile Cloud Computing (MCC) uses Cloud Computing services and functionalities in a mobile environment to facilitate provisioning new emerging applications and services and overcome the battery life issues and resource limitations of mobile devices. In the meantime, energy consumption in MCC has become an important issue and so considerable energy-aware practical and theoretical solutions have been proposed in recent years. In this chapter, the proposed solutions have been discussed in three parts from the viewpoint of energy consumption, with the aim of moving toward green computing. In part one, energy-efficient algorithms in MCC for content caching and offloading in cloud nodes have been investigated. Part two deals with the energy-efficient approaches applied in MCC powered by renewable energy sources integrated with brown energy sources. In part three, AI-based models applied in MCC architecture for energy optimization have been reviewed and finally, challenges and future works have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taheribakhsh, M., et al.: 5G implementation: major issues and challenges. In: 2020 25th International Computer Conference, Computer Society of Iran (CSICC). IEEE (2020)

    Google Scholar 

  2. Pozveh, A.J., Shahhoseini, H.S.: IoT integration with MEC. In: Mobile Edge Computing, pp. 111–144. Springer (2021)

    Chapter  Google Scholar 

  3. Li, J., Dai, M., Su, Z.: Energy-aware task offloading in the Internet of Things. IEEE Wirel. Commun. 27(5), 112–117 (2020)

    Article  Google Scholar 

  4. Xu, Z., et al.: Energy-aware collaborative service caching in a 5G-enabled MEC with uncertain payoffs. IEEE Trans. Commun. (2021)

    Google Scholar 

  5. Seo, Y.-J., et al.: A novel joint mobile cache and power management scheme for energy-efficient mobile augmented reality service in mobile edge computing. IEEE Wirel. Commun. Lett. 10(5), 1061–1065 (2021)

    Article  Google Scholar 

  6. Li, W., et al.: A reinforcement learning based smart cache strategy for cache-aided ultra-dense network. IEEE Access. 7, 39390–39401 (2019)

    Article  Google Scholar 

  7. Wu, H., et al.: Toward energy-aware caching for intelligent connected vehicles. IEEE Internet Things J. 7(9), 8157–8166 (2020)

    Article  Google Scholar 

  8. Kabir, A., et al.: Energy-aware caching and collaboration for green communication systems. Acta Montan. Slovaca. 26(1) (2021)

    Google Scholar 

  9. Li, Q., et al.: A green DDPG reinforcement learning-based framework for content caching. In: 2020 12th International Conference on Communication Software and Networks (ICCSN). IEEE (2020)

    Google Scholar 

  10. Rahmani, A.M., et al.: Towards data and computation offloading in mobile cloud computing: taxonomy, overview, and future directions. Wirel. Pers. Commun., 1–39 (2021)

    Google Scholar 

  11. Jazayeri, F., Shahidinejad, A., Ghobaei-Arani, M.: A latency-aware and energy-efficient computation offloading in mobile fog computing: a hidden Markov model-based approach. J. Supercomput. 77(5), 4887–4916 (2021)

    Article  Google Scholar 

  12. Anjaria, K., Patel, N.: Attainment of green computing in cloudlet-based mobile cloud computing model using squirrel search algorithm. In: Proceedings of 6th International Conference on Recent Trends in Computing: ICRTC 2020. Springer (2020)

    Google Scholar 

  13. Huang, L., et al.: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing. Digit. Commun. Netw. 5(1), 10–17 (2019)

    Article  Google Scholar 

  14. Mahmud, R., et al.: Quality of Experience (QoE)-aware placement of applications in Fog computing environments. J. Parallel Distrib. Comput. 132, 190–203 (2019)

    Article  Google Scholar 

  15. Wu, S., et al.: An efficient offloading algorithm based on support vector machine for mobile edge computing in vehicular networks. In: 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE (2018)

    Google Scholar 

  16. Zahed, M.I.A., et al.: Green and secure computation offloading for cache-enabled IoT networks. IEEE Access. 8, 63840–63855 (2020)

    Article  Google Scholar 

  17. Ali, A., et al.: An efficient dynamic-decision based task scheduler for task offloading optimization and energy management in mobile cloud computing. Sensors. 21(13), 4527 (2021)

    Article  Google Scholar 

  18. Xing, N., et al.: A network energy efficiency measurement method for cloud-edge communication networks. In: International Conference on Simulation Tools and Techniques. Springer (2020)

    Google Scholar 

  19. Pan, S., et al.: Dependency-aware computation offloading in mobile edge computing: a reinforcement learning approach. IEEE Access. 7, 134742–134753 (2019)

    Article  Google Scholar 

  20. Hao, Y., et al.: Energy-aware offloading based on priority in mobile cloud computing. Sustain. Comput. Inform. Syst. 31, 100563 (2021)

    Google Scholar 

  21. Colombo-Mendoza, L.O., et al.: A knowledge-based multi-criteria collaborative filtering approach for discovering services in mobile cloud computing platforms. J. Intell. Inf. Syst. 54(1), 179–203 (2020)

    Article  MathSciNet  Google Scholar 

  22. Aliyu, A., et al.: Mobile cloud computing: taxonomy and challenges. J. Comput. Netw. Commun. 2020 (2020)

    Google Scholar 

  23. Kumar, J., Rani, A., Dhurandher, S.K.: Convergence of user and service provider perspectives in mobile cloud computing environment: taxonomy and challenges. Int. J. Commun. Syst. 33(18), e4636 (2020)

    Google Scholar 

  24. Nugroho, K., et al.: Mobile cloud learning based on user acceptance using DeLone and McLean model for higher education. Int. J. Adv. Comput. Sci. Appl. 11(1) (2020)

    Google Scholar 

  25. Zhu, X., Zhou, M.C.: Multi-objective optimized cloudlet deployment and task offloading for Mobile edge computing. IEEE Internet Things J. (2021)

    Google Scholar 

  26. Liu, Q., et al.: Multi-objective resource allocation in mobile edge computing using PAES for Internet of Things. Wirel. Netw, 1–13 (2020)

    Google Scholar 

  27. Zalat, M.S., Darwish, S.M., Madbouly, M.M.: An effective offloading model based on genetic Markov process for cloud mobile applications. In: International Conference on Advanced Intelligent Systems and Informatics. Springer (2020)

    Google Scholar 

  28. Zhang, L., et al., Energy-Delay Tradeoff for Virtual Machine Placement in Virtualized Multi-Access Edge Computing: A Two-Sided Matching Approach 2021

    Google Scholar 

  29. Peng, K., et al.: An energy-and cost-aware computation offloading method for workflow applications in mobile edge computing. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–15 (2019)

    Article  Google Scholar 

  30. Power and performance efficient SDN-enabled fog architecture. arxiv (2021)

    Google Scholar 

  31. Alomari, A., et al.: Resource management in SDN-based cloud and SDN-based fog computing: taxonomy study. Symmetry. 13(5), 734 (2021)

    Article  Google Scholar 

  32. Singh, A., Aujla, G.S., Bali, R.S.: Container-based load balancing for energy efficiency in software-defined edge computing environment. Sustain. Comput. Inform. Syst. 30, 100463 (2021)

    Google Scholar 

  33. Ehsan, A., Yang, Q.: Optimal integration and planning of renewable distributed generation in the power distribution networks: a review of analytical techniques. Appl. Energy. 210, 44–59 (2018)

    Article  Google Scholar 

  34. Jianzhong, X., Assenova, A., Erokhin, V.: Renewable energy and sustainable development in a resource-abundant country: challenges of wind power generation in Kazakhstan. Sustainability. 10(9), 3315 (2018)

    Article  Google Scholar 

  35. Zahed, M.I.A., et al.: A review on green caching strategies for next generation communication networks. IEEE Access. 8, 212709–212737 (2020)

    Article  Google Scholar 

  36. Deng, W., et al.: Harnessing renewable energy in cloud datacenters: opportunities and challenges. IEEE Netw. 28(1), 48–55 (2014)

    Article  Google Scholar 

  37. Munir, M.S., et al.: A multi-agent system toward the green edge computing with microgrid. In: 2019 IEEE Global Communications Conference (GLOBECOM). IEEE (2019)

    Google Scholar 

  38. Perin, G., et al.: EASE: energy-aware job scheduling for vehicular Edge networks with renewable energy resources. arXiv preprint arXiv, 2111.02186 (2021)

    Google Scholar 

  39. Khalil, M.I.K., Ahmad, I., Almazroi, A.A.: Energy efficient indivisible workload distribution in geographically distributed data centers. IEEE Access. 7, 82672–82680 (2019)

    Article  Google Scholar 

  40. Yang, C., et al.: Efficient task offloading and resource allocation for edge computing-based smart grid networks. In: ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE (2019)

    Google Scholar 

  41. Chen, Y., et al.: Joint task scheduling and energy management for heterogeneous mobile edge computing with hybrid energy supply. IEEE Internet Things J. 7(9), 8419–8429 (2020)

    Article  Google Scholar 

  42. Vallero, G., et al.: Base Station switching and edge caching optimisation in high energy-efficiency wireless access network. Comput. Netw. 192, 108100 (2021)

    Article  Google Scholar 

  43. Zahed, M.I.A., et al.: Proactive content caching using surplus renewable energy: a win–win solution for both network service and energy providers. Futur. Gener. Comput. Syst. 105, 210–221 (2020)

    Article  Google Scholar 

  44. Zhang, S., et al.: Self-sustaining caching stations: toward cost-effective 5G-enabled vehicular networks. IEEE Commun. Mag. 55(11), 202–208 (2017)

    Article  Google Scholar 

  45. Han, T., Ansari, N.: Network utility aware traffic load balancing in backhaul-constrained cache-enabled small cell networks with hybrid power supplies. IEEE Trans. Mob. Comput. 16(10), 2819–2832 (2017)

    Article  Google Scholar 

  46. Xu, D., et al.: Joint caching and sleep-active scheduling for energy-harvesting based small cells. In: 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE (2017)

    Google Scholar 

  47. Zahed, M.I.A., et al.: A cooperative green content caching technique for next generation communication networks. IEEE Trans. Netw. Serv. Manag. 17(1), 375–388 (2019)

    Article  Google Scholar 

  48. Zhao, F., et al.: Dynamic offloading and resource scheduling for mobile edge computing with energy harvesting devices. IEEE Trans. Netw. Serv. Manag. (2021)

    Google Scholar 

  49. Xu, H., et al.: Priority-aware reinforcement-learning-based integrated design of networking and control for industrial Internet of Things. IEEE Internet Things J. 8(6), 4668–4680 (2020)

    Article  Google Scholar 

  50. Li, Y., et al.: Smart duty cycle control with reinforcement learning for machine to machine communications. In: 2015 IEEE International Conference on Communication Workshop (ICCW). IEEE (2015)

    Google Scholar 

  51. AI based service management for 6G green communications. arXiv (2021)

    Google Scholar 

  52. Jafari, A.H., Shahhoseini, H.S.: A reinforcement routing algorithm with access selection in the multi-hop multi-Interface networks. J. Electr. Eng. 66(2), 70 (2015)

    Google Scholar 

  53. Suryadevara, N.K.: Energy and latency reductions at the fog gateway using a machine learning classifier. Sustain. Comput. Inform. Syst., 100582 (2021)

    Google Scholar 

  54. Xu, C., Zhu, G.: Intelligent manufacturing lie group machine learning: real-time and efficient inspection system based on fog computing. J. Intell. Manuf. 32(1), 237–249 (2021)

    Article  Google Scholar 

  55. Nawrocki, P., Sniezynski, B., Slojewski, H.: Adaptable mobile cloud computing environment with code transfer based on machine learning. Pervasive Mobile Comput. 57, 49–63 (2019)

    Article  Google Scholar 

  56. Chen, X., et al., Unsupervised Deep Learning for Binary Offloading in Mobile Edge Computation Network. 2021

    Book  Google Scholar 

  57. Nawrocki, P., Sniezynski, B.: Adaptive context-aware energy optimization for services on mobile devices with use of machine learning. Wirel. Pers. Commun. 115(3), 1839–1867 (2020)

    Article  Google Scholar 

  58. Nawrocki, P., et al.: Adaptive context-aware energy optimization for services on mobile devices with use of machine learning considering security aspects. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE (2020)

    Google Scholar 

  59. Kilcioglu, E., et al.: An energy-efficient fine-grained deep neural network partitioning scheme for wireless collaborative fog computing. IEEE Access. (2021)

    Google Scholar 

  60. Eshratifar, A.E., Abrishami, M.S., Pedram, M.: JointDNN: an efficient training and inference engine for intelligent mobile cloud computing services. IEEE Trans. Mob. Comput. (2019)

    Google Scholar 

  61. Ali, Z., et al.: A deep learning approach for energy efficient computational offloading in mobile edge computing. IEEE Access. 7, 149623–149633 (2019)

    Article  Google Scholar 

  62. Ale, L., et al.: Delay-aware and energy-efficient computation offloading in mobile edge computing using deep reinforcement learning. IEEE Trans. Cognit. Commun. Netw. (2021)

    Google Scholar 

  63. Bi, S., et al.: Lyapunov-guided deep reinforcement learning for stable online computation offloading in mobile-edge computing networks. IEEE Trans. Wirel. Commun. (2021)

    Google Scholar 

  64. Wang, L., et al.: Deep reinforcement learning based dynamic trajectory control for UAV-assisted mobile edge computing. IEEE Trans. Mob. Comput. (2021)

    Google Scholar 

  65. Gong, S., et al.: Deep reinforcement learning for backscatter-aided data offloading in mobile edge computing. IEEE Netw. 34(5), 106–113 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

Authors would like to express their great appreciation to Dr. Nasim Kazemifard and Mr. Mahdi Moazzami Peyro from Mobile Telecommunication Company of Iran (MCI) for their valuable and constructive suggestions during writing this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Jafari Pozveh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pozveh, A.H.J., Shahhoseini, H.S., Soufyani, F.A., Taheribakhsh, M. (2022). Optimization of Green Mobile Cloud Computing. In: De, D., Mukherjee, A., Buyya, R. (eds) Green Mobile Cloud Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-08038-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08038-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08037-1

  • Online ISBN: 978-3-031-08038-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics