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Abstract. Type-4 clones refer to a pair of code snippets with similar
semantics but written in different syntax, which challenges the existing
code clone detection techniques. Previous studies, however, highly rely
on syntactic structures and textual tokens, which cannot precisely repre-
sent the semantic information of code and might introduce non-negligible
noise into the detection models. To overcome these limitations, we design
a novel semantic graph-based deep detection approach, called SEED. For
a pair of code snippets, SEED constructs a semantic graph of each code
snippet based on intermediate representation to represent the code se-
mantic more precisely compared to the representations based on lexical
and syntactic analysis. To accommodate the characteristics of Type-4
clones, a semantic graph is constructed focusing on the operators and
API calls instead of all tokens. Then, SEED generates the feature vec-
tors by using the graph match network and performs clone detection
based on the similarity among the vectors. Extensive experiments show
that our approach significantly outperforms two baseline approaches over
two public datasets and one customized dataset. Especially, SEED out-
performs other baseline methods by an average of 25.2% in the form of
F1-Score. Our experiments demonstrate that SEED can reach state-of-
the-art and be useful for Type-4 clone detection in practice.

Keywords: intelligent software engineering · clone detection· semantic
graph · graph neural network.

1 Introduction

Code clones, widely existing in software systems (e.g., 15%-25% in Linux kernel
[1]), exert a significant impact on software maintenance and evolution (e.g., fault
localization [23,8] and code refactor [13,10]). Typically, code clones can be cate-
gorized into four types [14] based on different levels of similarity. Type-4 clone
refers to syntactically dissimilar code snippets that implement the same seman-
tic, which is the most challenging problem for traditional code clone detection
techniques.
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Currently, researchers have tried to consider Type-4 code clone detection as
a classification task and solve it with deep learning methods [19,22]. They build
contextual embedding models of source code, form feature vectors for code repre-
sentation, and then measure similarity among code vectors to detect code clones.
For example, ASTNN [22] presents a two-stage embedding approach based on
recurrent neural network (RNN) to extract features from the abstract syntax
tree (AST). TBCCD [20] likely links the AST with tokens to add more semantic
information and generates the feature vector by tree-based LSTM. The perfor-
mances of those approaches, however, are limited due to the following two main
limitations. First, the existing studies rely heavily on syntactic structures (e.g.,
AST) and cannot precisely represent the semantic information of code. Second,
textual tokens commonly adopted for the code representation do not contain
semantics that Type-4 clones require but introduce unnecessary noise data.

To explore an effective semantic-based solution for Type-4 clones, we pro-
pose a novel approach called SEED (Semantic-based codE clonE Detector)
in this paper. The key idea of SEED is to perform clone detection based on
1) the code semantic structures rather than syntactic or lexical structures, and
2) emphasizing operator and API call tokens rather than universal tokens. First,
SEED takes a code pair as input and constructs the semantic graph of each code
based on intermediate representation (IR) [21,5] to represent the semantics of
the source code. As the intermediary between high-level and assembly language,
IR represents code as specific instructions and therefore is closer to the code
semantics. Then, SEED models the semantic graphs by using the graph match
network (GMN) [6] and generates feature vectors of source code. Finally, SEED
predicts Type-4 clone pairs based on the similarities among feature vectors. We
evaluate the performance of our approach compared with two typical baseline
approaches over two public datasets and one large-scale customized dataset.
The results prove that SEED outperforms baseline approaches by over 25.2% on
average (reaching state-of-the-art) in the real-world scenario.

The main contributions of this paper are summarized as follows:

– we proposed a semantic-based deep learning approach SEED for Type-4
clone detection. SEED adopts the graph match network on the semantic
graph, which is built from code semantic structures and enhanced by oper-
ator and API call tokens.

– We customized a Type-4 code clone dataset called CF-5001 to mitigate the
threat posed by the lack of semantics of popular datasets (ı.e., POJ-104 and
BigCloneBench). CF-500 consists of 500 functionalities, which is approxi-
mately 5 times the size of popular datasets.

– We evaluated the performance of our approach over two public datasets and
one customized dataset. The results indicate that SEED can achieve state-
of-the-art performance and outperforms baseline approaches by over 25.2%
on average in a real-world scenario.

The remainder of this paper is organized as follows. In Sec. 2 we survey the
related work about code clone detection. In Sec. 3, we illustrate the overview of

1 https://github.com/ZhipengXue97/SEED
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SEED. In Sec. 4, we evaluate the performance of our approach with baselines
by answering three research questions. In Sec. 5, we discuss the threats to the
validity of the results. In Sec. 6, we conclude our work.

2 Related Work

As a critical problem in software maintenance, code clone detection has always
been a hot spot for research. Traditional code clone detection approaches mainly
focus on Type-1, 2, 3 code clones. They detect the code clone based on specific
features such as tokens, metrics, and graphs. For example, sourcerer [9] per-
forms clone detection based on the token. It obtains the code blocks with the
least frequent tokens in code snippets, then indexes the code blocks and com-
pares the blocks to find the clone pairs. Moreover, some methods use structure
features such as AST, PDG, or CFG. Deckard [4] computes the feature vec-
tors of ASTs and adopts the Locality Sensitive Hashing algorithm to detect
cloned code. CCgraph [25] converts the code snippets into PDGs, it then applies
the Weisfeiler-Lehman kernel to compute the graph similarity and identifies the
clone pairs. Although these methods use various information of the code, the
significant information loss in feature generation leads to the limitation of their
performance. Also, these methods rely heavily on syntax information, which
makes them unable to handle Type-4 code clones.

Since the deep learning perform impressive increment in natural language
process, recently, researchers try to introduce deep learning in code clone de-
tection. Different from traditional code clone detection approaches, the deep
learning based code clone detection approaches convert the code feature into
vector, and compare the similarity of the vectors. The deep learning based code
clone detection approaches assign different weights to different parts of the code
feature, which lead to a better performance on Type-4 code clone detection,
White et al. [19] firstly introduces the deep learning method to code clone de-
tection. They use a recurrent neural network to convert the textual information
into the vector and learn the code representation from AST. Following this work,
CDLH [18] and TBCCD [20] search for deep learning models that are more suit-
able for the tree structure of the AST and propose their method which uses the
tree-based deep learning model to handle AST. ASTNN [22] proposes a novel
two-step approach to represent the code snippet, using RNN to encode the AST
of each statement first and transforming the AST encoding of all the statements
into one vector to represent the code snippet. Oreo [15]and Deepsim [24] collect
more than 20 features from code syntax, and transfer the collected features into
vector. However, prior studies mainly relied on syntactic structure, as well as
identifiers, leads to significant limitations in their performance on Type-4 clone
detection. In contrast, SEED focuses on the semantic structure of code and the
operator and API call tokens.
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<label>:3
%4 = add nsw i32 %sum.0, %i.0
%5 = add nsw i32 %4, 1
%6 = add nsw i32 %5, 1
%7 = icmp sgt i32 %6, 0
br i1 7%, label %5, label %7

<label>:7
8% = add nsw i32 %i.0, -1
br label %1

...

...
<label>:3
%4 = add nsw i32 %sum.0, %i.0
br label %5

<label>:5
%6 = add nsw i32 %i.0, -1
br label %1

<label>:7
8% = = icmp sgt i32 %i.0, 0
br i1 8%, label %5, label %11

...

Fig. 1: The Overview of SEED

3 Proposed Method

In this section, we propose a semantic-based deep graph learning method named
SEED to cope with Type-4 clone detection. SEED detects Type-4 clones by
constructing semantic graphs to represent code semantics while focusing on the
operation semantics including operator and API call tokens.

3.1 Overview

Fig. 1 shows the overview of SEED. SEED consists of three steps, semantic fea-
ture extraction, semantic graph construction, and code clone detection. During
the first step, SEED takes a pair of code snippets as input and obtains the inter-
mediate representation (IR) from the compiler. Then, in the second step, SEED
constructs a semantic graph for each code snippet from IR to represent the
code semantics. In the last step, SEED takes the semantic graphs as the input
and transforms them into feature vectors using graph match network (GMN)
[6]. Subsequently, SEED predicts Type-4 clones based on whether the cosine
similarity between the two feature vectors reaches a certain threshold.

3.2 Semantic Feature Extraction

SEED is designed to detect Type-4 clones based on code semantics. IR, as the
language between the high-level programming language and the assembly lan-
guage, converts the complex grammars of the code into basic instructions. There-
fore, this version is closer to the developer’s intention and can represent the code
semantics more precisely.

In this paper, SEED supports C/C++ and Java and extracts semantic fea-
tures using LLVM 2 and Soot3. Since IR can only be generated from Compilable

2 https://llvm.org/
3 http://soot-oss.github.io/soot/
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code, we use tools such as JCoffee 4 to complete uncompilable code and help
them pass that obstacle.

The operator refers to the symbol that tells the compiler or interpreter to
perform specific mathematical, relational or logical operation. Most of the oper-
ator instructions in IR of C/C++ and Java consist of three main parts: opcode,
operand, and result, which means that the value of the operand is stored in
the result after the operation of the opcode. Some instructions may miss the
result or have more than two operands. Similarly, API call instructions in IR
also consist of three main parts: API call, parameter, and result, which means
that the API call output the result according to the input parameter. Following
the execution order of the code snippet, IR divides instructions into several in-
struction blocks according to the branch instruction (i.e., br) and uses a label
to present the entry of each block. For example, Fig. 2(b) shows the IR for the
source code in Fig. 2(a). Line 11 in Fig. 2(b) indicates that the sum of %sum.0
and %i.0 is stored in %4. Compared with token-based and AST-based Type-4
code clone detectors [2,9], instructions in IR focus on the operations on the vari-
able, which describe the process of code execution and represent the intention
of the developer (i.e., code semantics).

3.3 Semantic Graph Construction

To represent the code semantics, SEED combines the data flow and control flow
to form the semantic graph based on IR while focusing on operator and API
call tokens. In this section, we introduce semantic graph construction from two
aspects: nodes and edges.

Node Different from previous studies [19,18,20], which leverages all the textual
tokens, the semantic graph constructed in this section only contains data type,
operator, and API call tokens. We do not introduce identifier tokens in the
semantic graph, since the identifier tokens in code are not reliable, the same
identifier tokens can represent different semantics and lead to imprecise semantic
representation in clone detection. In contrast, the same operator and API call
tokens perform the same semantics in different codes.

Since each instruction contains only one operation (i.e., one operator or one
API call), we extract the operation from each instruction and take it as the
node of the semantic graph. Since the label in IR represents the entry of each
instruction block and contains the information of the control dependency of the
code snippets, SEED also introduces the label as the node. Moreover, to maintain
the code semantics, SEED considers the constant and input data. If the operand
of an instruction is a constant, we add a constant node next to its operation
node. If the operand is input data, we add an input node with its data type.

For example, as shown in Fig. 2(a) and Fig. 2(b), the line for (int i = n;

i > 0; i−−) in the source code includes three components: int i=0, i>0, and

4 https://github.com/piyush69/JCoffee
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Fig. 2: an Illustrative Example of a Source Code Snippet and Its Corresponding
IR Code and Semantic Graph

i−−. Accordingly, the compiler splits the line into three different IR instructions
in line 6, line 7 and line 15 of Fig. 2(b). These operations on variable i include
phi, cmp, and add. SEED takes these three operations as three nodes. Similarly,
the line printf("%d", sum) in Fig. 2(a) is recognized as a API call by compiler,
and compiler generates corresponding IR instructions in line 19 of Fig. 2(b).
SEED extracts the API call printf and adds an operation node. For the constant
0 in the instruction of line 7, we add a constant node 0 next to the operation
cmp. Moreover, instructions in lines 4, 10, 14 and 18 represent the labels in IR,
and SEED takes them as label nodes. The variable n in the instruction of line 1
represents the input data; thus, SEED adds a node i32 to the semantic graph.

Edge To integrate the data dependency and the control dependency, we add
the data flow edge and the control flow edge to the semantic graph.

Data Flow. For each instruction, if the result of it performs as the operand
or parameter of another, we connect operation nodes of these two instructions
with a data flow edge. Moreover, for each constant node or input node, we
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connect the data flow edges from these nodes to the operation nodes of their
corresponding instructions.

For example, %sum.0 in Fig. 2(b) is the result in line 5, while it is also the
operand in line 7. Therefore, we add a data flow edge from node phi in line 5
to node cmp in line 7. Since %sum.0 is also the parameter of API call printf,
we add a data flow edge from node phi in line 5 to node printf in line 19.
Moreover, since 0 is the operand of operator cmp, we add the data flow edge
from the constant node 0 to the operator node cmp in line 7.

Control Flow. As discussed in Sec. 3.2, IR divides instructions into several
instruction blocks following the execution process of the code snippet. The in-
struction blocks can be used to represent the control dependencies of the code
snippet. They are divided based on the branch instruction and use the label to
represent the entry of each instruction block. The jumps between instruction
blocks during the program execution are guided by operator br. Therefore, we
add the control flow edge from br to corresponding label nodes. To illustrate
the affiliation of instructions and instruction blocks, we also add control flow
edges between operation nodes of instructions and label nodes of corresponding
instruction blocks.

For example, in Fig. 2(b), since the operator add and br belong to the same
instruction block as the label node label:3, we connect the node label:3 to
node add and br with control flow edges. Moreover, since node br in line 8 is
related to label nodes label:3 and label:7, we add a control flow edge from
node br to label nodes label:3 and label:7, respectively.

3.4 Code Clone Detection

SEED takes the clone detection task as a matching task. For a pair of code
snippets, SEED generates the semantic graph of each code snippet into a feature
vector and detects Type-4 clones based on the similarity between these two
vectors. To adopt the graph structure of the semantic graph, we use the graph
match network (GMN) [6] to generate the feature vector of the semantic graph.

The input data of GMN are two semantic graphs (G1, G2) of the code pair,
each semantic graph G = (V,E), where V is the set of vertices and E is the

set of edges. First, we initialize the feature vector of each node as h
(0)
i using the

word2vec model [11]. Moreover, we initialize data flow edges and control flow
edges with different weights. Then, we calculate the node feature vectors over
multiple iterations to learn the feature vectors representing the code semantics.

For each iteration t, each node updates its feature vector h
(t)
i based on its

feature vector h
(t−1)
i in iteration t − 1, the message m

(t)
i from the neighbor

nodes in the same semantic graph, the similarity feature vector µ
(t)
i from another

semantic graph. GMN uses a gated recurrent unit (GRU) [3] to update the
feature vector in Eq. 1.

h
(t)
i = GRU(ht−1i ,m

(t)
i , µ

(t)
i ) (1)
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For node i, m
(t)
i refers to the message from its neighbors via the edges, allow-

ing h
(t)
i to obtain interrelationships between the node and the entire semantic

graph.

m
(t)
i =

∑
j

SUM(h
(t)
i , h

(t)
j , eij) (2)

In Eq. 2, node j is a neighbor of node i in the same semantic graph, the
message from node j to node i is calculated by weighted sum, and the weight is
the feature vector of edge eij . Moreover, GMN adopts an attention mechanism

to generate h
(t)
i while referencing the semantic graph of another code snippet.

αk→i =
exp(sh(h

(t−1)
i , h

(t−1)
k ))∑

k′ exp(sh(h
(t−1)
i , h

(t−1)
k′ )

(3)

µ
(t)
i =

∑
k

αk→i(h
(t−1)
i − h

(t−1)
k ) (4)

As shown in Eq. 3, sh is a cosine similarity metric. h
(t−1)
k represents the

feature vectors of the nodes in another semantic graph. αk→i refers to the sim-

ilarity between node i and node k, which is used as the attention weight. µ
(t)
i

aggregates the attention weights between the node i and all the nodes in another

semantic graph and represents the attention mechanism of node i. µ
(t)
i allows

h
(t)
i to represent the semantics of each node with a focus based on the difference

between the two semantic graphs and consequently, helps the model represent
the semantics of two code snippets more precisely.

After T iterations, the feature vector of each node h
(T )
i represents the seman-

tics of each node and corresponding instructions. Subsequently, to represent the
code semantics of the entire semantic graph, GMN aggregates the feature vector
of each node into the feature vector of the semantic graph (hG) using a mul-
tilayer perceptron (MLP) [7]. Furthermore, since the information of each node
has a different contribution to the code semantics, GMN adopts the attention
mechanism during the calculation of hG.

hG = MLPG

(∑
i∈V

σ
(

MLPgate

(
h
(T )
i

))
� MLP

(
h
(T )
i

))
(5)

As shown in Eq. 5, σ(MLPgate(h
(T )
i )) represents the attention mechanism,

which assigns different weights to different node feature vectors. It is trained
during the training process and guides the aggregation of node feature vectors.
It generates the hG with focus, which enables it to represent code semantics
more accurately.
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Finally, we adopt cosine similarity to calculate the similarity between the
feature vector of the two code snippets. By comparing the similarity of feature
vectors and the threshold, we can predict whether the input code pair is a Type-4
clone. We choose the threshold empirically based on the validation set.

4 Experiment

In this section, we conduct experiments to evaluate our approach by answering
the following research questions.
RQ1: How does SEED perform against baseline approaches?
Previous studies achieve good experimental results on their datasets [22,20]. To
compare the performance of SEED with those of previous studies, we followed
the experimental setup of previous studies to test the model performance.
RQ2: How does SEED perform when implemented on a more diver-
sified dataset?
The existing datasets, although they contain numerous code pairs, the number
of their semantics is relatively small. This makes code clone detectors only ex-
posed to limited semantics, thereby posing a threat to the training and testing
of the model. Accordingly, we constructed a more diversified dataset and tested
the performance of SEED to understand if SEED can achieve a consistent result.
RQ3: How effective are the different semantic graph construction
strategies of SEED at Type-4 clone detection?
Since SEED constructed the semantic graph while focusing on the operation. To
evaluate the performance of emphasizing operator and API call tokens in seman-
tic graph construction and make sure the semantic graph construction strategy
in SEED is the best one, we carried out an ablation study on the semantic graph
construction method.

4.1 Experiment Setup

Datasets In our experiment, we use two public datasets Big-CloneBench[16]
and POJ-104[12], and one larger-scale customized dataset called CF-500. The
overall information of datasets is listed in Table 1.

BigCloneBench is built by mining frequently used code semantics from Java
project dataset, IJAdataset-2.0. We select 11,799 compilable code snippets cov-
ering 43 semantics from the BigCloneBench as one of our datasets. POJ-104
[12] is a widely used dataset to evaluate the performance of Type-4 code clone
detection. It is collected from an open judging platform POJ5, which contains
many programming problems and corresponding submissions. Since submissions
of the same problem in the open judging platform usually have the same seman-
tic and different syntactic structures and therefore can be classified into Type-4
clone pairs. POJ-104 contains 104 problems and 500 submissions written in C
for each problem. Since the submissions will be compiled and executed by the

5 http://poj.org/
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open judging platform, all these submissions are compilable and thereby can be
used as our dataset.

Although the existing datasets contain numerous clone pairs, they have rel-
atively limited semantics, resulting in limited exposure to less semanticity and
posing a threat to the training and testing of the model. To alleviate such a
threat, we built a more diversified dataset named CF-500. We collected CF-500
from the open judging platform Codeforces6. CF-500 contains more than 23,000
code snippets written in C, covering 500 problems.

Since each two code snippets can construct a code pair, the number of code
pairs in a dataset can be higher than 10,000,000 if using all possible combinations.
Due to the vast number of code pairs, we randomly downsample the code pairs
to build our datasets. For all the training sets, we sample 100,000 code pairs
randomly with the proportion of the clone pairs and nonclone pairs as 1:1. For
the validation set and the test set, we randomly select 10,000 code pairs from
the remaining pairs.

Baseline Approaches We reproduced two state-of-the-art approaches, ASTNN
and TBCCD, to compare with our approach. ASTNN [22] proposes a novel two-
step approach to represent the code snippet, using RNN to encode the AST of
each statement first and transforming the AST encoding of all the statements
into one vector to represent the code snippet. TBCCD [20] uses position-aware
character embedding (PACE) technology to embed tokens. PACE takes the to-
ken embedding and AST as the input and generates the feature vector using
tree-based LSTM to represent the code snippet. Both of them likely use the sim-
ilarity of feature vectors to detect code clones. We do not compare with FA-AST
[17] or Deepsim [24], since they only support JAVA and report similar results
compared to TBCCD in their paper.

Table 1: Overall Information for Datasets

Datasets Language Semantics
Code

snippets

BigCloneBench JAVA 43 11,799
POJ-104 C 104 52,000
CF-500 C 500 23,146

4.2 Answer to RQ1: Overall Performance

In this experiment, we compare SEED’s performance against two baseline ap-
proaches. Previous studies [17,18] simply split code pairs into the training, vali-
dation, and test sets to proceed with the experiment. Although such an approach

6 http://codeforces.com/
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ensures that code pairs in the three sets are not the same, it does not consider
the semantics of the code snippet. In other words, different implementations of
the same semantics may be split into different sets, making it possible for the
model to see the code snippets under the same semantics in the test set during
the training process. However, the semantics vary in real-world software, and
it is impossible to include all semantics in the training set. To better evaluate
the performance of SEED, we split the training, validation, and test sets from
different code semantics.

Following the setting in TBCCD [20], we use two public datasets, BigCloneBench
and POJ-104, to evaluate the model performance. We construct the training set
and the validation set from their first 15 problems and 10 problems. Instead of
using all the remaining problems as the test set, we divided them into 6 and
3 test sets to evaluate the robustness of SEED when testing different seman-
tics. We illustrate the experimental results in Table 2. Columns P, R, and F1
represent precision, recall, and F1-Score, respectively.

We find that SEED significantly outperforms both baseline approaches on
all test sets. On POJ-104, SEED obtains an average F1-Score of 0.62, which is
higher than the F1-Score of ASTNN (0.45) and TBCCD (0.50). Compared with
TBCCD, SEED outperforms by at least 17.5% (from 0.40 to 0.47) in the form of
the F1-Score in the test set with problem IDs 16-30 and even by approximately
30% (from 0.53 to 0.68) in the form of F1-Score in the test set with problem
IDs 61-75. For BigCloneBench, similarly, SEED achieves an average F1-Score of
0.54, which significantly outperforms that of baseline approaches. In particular,
in terms of precision, SEED outperforms baselines by 74.4% on average. In the
real-world software repositories, the accuracy of clone pairs reported by SEED is
higher than the accuracy of baselines. Compared with the performance on POJ-
104, the F1-Scores of baselines in BigCloneBench drop by approximately 25%,
while those of SEED drop by less than 15% because BigCloneBench is collected
from a practical software environment in which the identifiers and API calls vary.
Although exciting improvement of SEED in precision, recall, and F1-score, we
must acknowledge that SEED performs poorer robustness than baselines, since
the F1-score of SEED drops 34% (from 0.71 to 0.47), while that of TBCCD
and ASTNN only drops 28% (from 0.56 to 0.40) and 29% (from 0.51 to 0.36) in
different test sets.

4.3 Answer to RQ2: Larger-scale Experiment

In this experiment, we aimed to alleviate the threat caused by the small number
of the semantics of the existing dataset and evaluate the performance of our ap-
proach over the more diversified datasets, CF-500. Since the experiment setting
in previous studies [20,18] and RQ1 only use a limited size of datasets, we also
use the entire POJ-104 and BigCloneBench dataset to do an experiment and
analyze the result.

To understand the robustness of SEED in different sizes of dataset, We keep
the validation set and test set unchanged and train the model on varied training
sets. For BigCloneBench, we extract a validation set from semantic IDs 32-37 and
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Table 2: Result of SEED and Other Baselines on the POJ-104 and Big-
CloneBench Dataset

Datasets
Problem IDs
for Testing

ASTNN TBCCD SEED
P R F1 P R F1 P R F1

POJ-104

16 − 30 0.32 0.42 0.36 0.35 0.46 0.40 0.41 0.57 0.47
31 − 45 0.44 0.61 0.51 0.51 0.62 0.56 0.74 0.68 0.71
45 − 60 0.41 0.60 0.49 0.59 0.48 0.53 0.71 0.60 0.64
61 − 75 0.41 0.65 0.51 0.58 0.49 0.53 0.78 0.69 0.68
76 − 90 0.38 0.63 0.47 0.61 0.44 0.51 0.71 0.57 0.63

(91 − 104) + 16 0.37 0.45 0.40 0.48 0.45 0.46 0.61 0.55 0.58
average 0.39 0.56 0.45 0.52 0.49 0.50 0.66 0.61 0.64

BigCloneBench
12 − 22 0.28 0.39 0.32 0.20 0.92 0.33 0.58 0.44 0.50
23 − 33 0.34 0.40 0.37 0.27 0.91 0.41 0.72 0.57 0.63
34 − 44 0.25 0.30 0.27 0.17 0.67 0.27 0.44 0.51 0.47
average 0.29 0.36 0.33 0.21 0.83 0.38 0.58 0.51 0.54

a test set from semantic IDs 38-44. The training sets are built from semantics IDs
2-11, 2-21, and 2-31. For POJ-104, we set problem IDs 76-90 as the validation
set and problem IDs 91-104 as the test set. Then, we create several training sets
of different sizes. The training sets cover problem IDs 1-15, 1-30, 1-45, 1-60, and
1-75. For CF-500, we set problem IDs 401-450 and 451-500 as the validation set
and test set, and problem IDs 1-100, 1-200, 1-300, and 1-400 as training sets,
providing us with a series of training sets of increasing size from 10 to 400.

Table 3: Result of SEED and Other Baselines on the More Diversified Datasets

Datasets
Problem IDs
for Training

ASTNN TBCCD SEED
P R F1 P R F1 P R F1

POJ-104

1 − 15 0.36 0.48 0.41 0.40 0.63 0.49 0.51 0.64 0.57
1 − 30 0.44 0.52 0.50 0.51 0.71 0.59 0.74 0.66 0.70
1 − 45 0.49 0.69 0.57 0.61 0.71 0.65 0.80 0.67 0.73
1 − 60 0.55 0.80 0.65 0.69 0.66 0.67 0.78 0.74 0.76
1 − 75 0.61 0.83 0.66 0.70 0.69 0.70 0.77 0.78 0.78

BigCloneBench
2 − 11 0.30 0.33 0.31 0.21 0.71 0.32 0.50 0.55 0.52
2 − 21 0.34 0.47 0.39 0.30 0.69 0.42 0.57 0.68 0.62
2 − 31 0.36 0.55 0.43 0.33 0.69 0.45 0.68 0.68 0.68

CF-500

1 − 100 0.63 0.85 0.72 0.71 0.77 0.74 0.82 0.74 0.78
1 − 200 0.62 0.87 0.73 0.73 0.76 0.74 0.80 0.80 0.80
1 − 300 0.62 0.89 0.74 0.73 0.77 0.75 0.81 0.82 0.81
1 − 400 0.61 0.94 0.74 0.74 0.76 0.75 0.81 0.83 0.82

As illustrated in Table 3, we find that SEED outperforms baseline approaches
in all datasets. In BigCloneBench and POJ-104, SEED achieves a significant
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performance improvement by 54% and 14% on average in terms of the F1-Score,
respectively. In particular, despite the greater number of semantics in CF-500,
SEED still outperforms other approaches by 8% in the form of the F1-Score.
Similar to the result of RQ1, SEED achieves the highest precision in baseline
approaches while maintaining a similar recall, validating the result we discussed
in RQ1 and proving that our approach can achieve a constant result when tested
on more diversified datasets.

Furthermore, the results also prove that our extended dataset can allevi-
ate the threat posed by the low number of the semantics of datasets. In Big-
CloneBench, with the increasing size of the dataset, the performance of SEED
increases by up to 31%, 24%, and 36% in the form of F1-Score, Recall, and Preci-
sion, respectively. Likely, on POJ-104, with the increasing size of the dataset, the
metrics of SEED increase by up to 37%, 21%, and 51%, respectively. In contrast,
with the increasing size of the dataset in CF-500, the precision of SEED remains
stable, while the F1-Score and recall increase 5% and 24%, respectively. To un-
derstand such improvement, we analyze code pairs that are correctly determined
only after the dataset is expanded. The code snippets in BigCloneBench are col-
lected from the real-world project and implement the semantics using mainly
the API calls. The clone detection model can better understand the semantics
of API calls by training on a more semantic-diverse dataset. For POJ-104 and
CF-500, code snippets focus on the algorithm. Training on a more semantically
diverse dataset enables the model to better identify the core structures of the
code snippets and ignore irrelevant ones. Therefore, the result indicates that
training code clone models with a semantics diverse dataset can help improve
the model performance.

To establish a better understanding of the effect of dataset size on the per-
formance of the model, we compared the performance of SEED with baseline
approaches using datasets of different sizes. We found that the performance of
all models increases as the size of the training set grows. Meanwhile, as the size
of the dataset increases, the speed of performance improvement gradually de-
creases and peaks when the dataset reaches a certain size, indicating that the
performance improvement caused by the size of the dataset is limited when it
reaches a certain number. Moreover, we find that SEED outperforms baseline
approaches over various sizes of datasets and can achieve the same performance
as baselines by training on a smaller dataset, also verifying the validity of our
approach.

4.4 Answer to RQ3: Ablation Study

An ablation study usually refers to comparing the performance of different strate-
gies. Since we focus on the operator and API call tokens when constructing the
semantic graph, to verify the validity of this method, we carried out an ablation
study to evaluate the semantic graph construction method. We use the same
dataset as RQ2. For the experimental group, we constructed different semantic
graphs by combining the identifiers and data types in the semantic graphs. The
setting of these semantic graphs is as follows:
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– SEED+identifier: SEED+identifier uses not only the operator and API call
tokens, but also identifier tokens of variables as the nodes in the semantic
graph and connects data flow edges from each identifier node to its corre-
sponding operation node.

– SEED+type: SEED+type still introduces variables as nodes in the semantic
graph, while it replaces the identifier tokens of variables by the data type
tokens of them.

– SEED: SEED removes all the variable or data type token, and only uses the
operator and API call tokens as the node in the semantic graph.

The results of our experiments are shown in Table 4. To explore the rea-
son for different performances when using different semantic graph construction
methods, we collected the changed sizes of the constructed semantic graph and
compared the differences among them. The changed sizes of different semantic
graphs are shown in Table 5. The column ratio refers to the maximum decrease
ratio between SEED and the other two models.

First, we compared the performance of SEED+identifier and SEED+type
to discuss the influence of using tokens without instructive semantics in Type-4
Clone.

Table 4: Result of SEED and Other Settings of Semantic Graph on the Different
Datasets

Datasets
Problem IDs
for Training

SEED+identifier SEED+type SEED
P R F1 P R F1 P R F1

POJ-104 1 − 75 0.77 0.71 0.74 0.78 0.75 0.76 0.77 0.78 0.78

BigCloneBench 2 − 31 0.50 0.57 0.53 0.64 0.61 0.62 0.68 0.68 0.68

CF-500 1 − 400 0.74 0.83 0.79 0.77 0.82 0.80 0.81 0.83 0.82

The results show that using identifiers leads to a slight performance drop
of approximately 2.6% over POJ-104 and CF-500. However, using identifiers re-
duces the model performance in the form of F1-Score by approximately 17% in
BigCloneBench. To understand such differences, we studied the semantic graph
size of the three models. From Table 5, we found that after replacing identifiers
by their data types (SEED+identifier and SEED+type), the size of vocabulary
decreased 58,941. This result indicates that although the code snippet in Big-
CloneBench has good naming rules such as the Camel case , it still introduces
noise into the dataset and leads to the out-of-vocabulary problem. In contrast,
code snippets in POJ-104 and CF-500 are written by only one programmer for
one simple task, making the programmer often use simple characters such as
i, j, etc., resulting in a small size of the vocabulary and alleviating the out-of-
vocabulary problem and preventing the model from a significant performance
drop.

Second, the performance between SEED+type and SEED illustrates the ef-
fectiveness of the size of the semantic graph. For POJ-104 and CF-500, the F1-



SEED: Semantic Graph Based Deep Detection for Type-4 Clone 15

Score increases by approximately 2%, while for BigCloneBench, the F1-Score
increases by 10%. We studied the reason for this difference. Table 5 shows the
content of the semantic graph in SEED+type and the content of the semantic
graph in SEED. We found that by constructing a semantic graph without iden-
tifiers except for constants, the number of operand nodes and data flow edges
in the semantic graph decrease by over 60% in all three datasets because SEED
uses the only operation to construct the semantic graph, which significantly re-
duces the size of the semantic graph. With a smaller size semantic graph, the
GMN model can focus on learning the semantic information (i.e., operation) in
the semantic graph, resulting in a more accurate feature vector generated by
GMN and consequently the improvement of the model performance.

In conclusion, the results in RQ3 indicate that the semantic graph construc-
tion strategy in SEED outperforms alternative strategies in terms of most met-
rics over all three datasets, proving that the semantic graph focusing on the
operations can better represent the code semantics.

Table 5: The Changed Size of SEED’s Semantic Graph and Other Settings of
Semantic Graph on the Different Datasets

Datasets Characteristic
SEED+
identifier

SEED+
type

SEED Ratio

POJ-104
vocabulary size 6204 2350 1981 0.68
operand node 126.83 126.83 43.84 0.65
dataflow edge 426.48 426.48 153.10 0.64

BigClone-
Bench

vocabulary size 87,534 28,593 13,666 0.83
operand node 97.44 97.44 38.13 0.61
dataflow edge 145.93 145.93 51.58 0.64

CF-500
vocabulary size 7392 3175 2022 0.72
operand node 74.51 74.51 24.77 0.67
dataflow edge 294.74 294.74 97.98 0.67

5 Threats to Validity

In this section, we discuss the threat to the validity of our approach. SEED may
suffer from two threats to validity as follows:

Internal Validity. During semantic graph construction, we emphasize op-
erator and API call tokens of IR instruction, based on the assumption that
the semantic of operator and API call tokens perform more robust compared to
identifier tokens. Different API calls may have similar functionality or in reverse,
which affects the performance of SEED. To verify the validity of the assumption
and the strategy in semantic graph construction, we do an ablation study in
Sec.4.
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External Validity. We built a Type-4 code clone dataset CF-500 in our
experiment. To make sure different problems refer to different functionalities,
we compare the description of each problem and discard problems with the
same descriptions. However, we can not guarantee whether different problem
descriptions mean different functionalities.

6 Conclusion

In this study, we presented a semantic-based deep detection approach, SEED,
to detect Type-4 code clones. SEED focused on the semantic structure of code
and the operator and API call tokens. To alleviate the threat posed by the small
number of functionalities in the previous dataset, we constructed a dataset, CF-
500, containing 23,146 code implementations of 500 functionalities. This dataset
is nearly five times the size of the existing dataset. Extensive experiments over
two public datasets and one customized dataset show that our approach, com-
pared to the 3 baseline approaches, achieves state-of-the-art performance. Our
approach can be applied in practice to assist with software maintenance.

In the future, we aim to further improve the performance of the tool support-
ing your approach. To better represent the semantics of the source code, we can
filter out more less-semantic content from the semantic graph, and merge more
semantic features in it. Another potential extension to our work is to leverage
other GNN models, which can better compare the semantic graphs and embed
them into feature vectors.

7 Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful
comments. This work was substantially supported by National Natural Science
Foundation of China (No. 61872373 and 61872375).

References

1. Antoniol, G., Villano, U., Merlo, E., Di Penta, M.: Analyzing cloning evolution in
the linux kernel. Information and Software Technology 44(13), 755–765 (2002)

2. Ben-Nun, T., Jakobovits, A.S., Hoefler, T.: Neural code comprehension: A learn-
able representation of code semantics. Advances in Neural Information Processing
Systems 31, 3585–3597 (2018)
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