Skip to main content

Optical Spectroscopy for Fingerprinting Food: A Photonic Tasting

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 918))

Included in the following conference series:

  • 574 Accesses

Abstract

Optical spectroscopy is a successful technique for assessing the quality and safety of intact food. It is a photonic tasting, as the food can be checked in real time by means of a light bean, without sampling and without the need for intermediate chemistry, thus providing a green analytical tool. The most effective instruments for spectroscopy available in our laboratory are presented, together with some successful applications to food analysis. They range from bulky instruments for Raman spectroscopy to custom and peculiar devices for turbidity-free absorption spectroscopy of liquids, to pocket colorimeters and fluorimeters, and to the most recent handheld smartphone-connected spectrometer for applications in low-resource settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de la Guardia, M., Garrigues, S. (eds.): Challenges in Green Analytical Chemistry. RSC Publishing, Cambridge (2011)

    Google Scholar 

  2. de la Armenta, S., Guardia, M.: Green spectroscopy: a scientometric picture. Spectrosc. Lett. 42, 277–283 (2009)

    Article  Google Scholar 

  3. Armenta, S., Garrigues, S., de la Guardia, M.: Green analytical chemistry. Trends Anal. Chem. 27, 497–511 (2008)

    Article  Google Scholar 

  4. Gałuszka, A., Migaszewski, Z.M., Namieśnik, J.: The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal. Chem. 50, 78–84 (2013)

    Article  Google Scholar 

  5. Gałuszka, A., Konieczka, P., Migaszewski, Z.M., Namieśnik, J.: Analytical eco-scale for assessing the greenness of analytical procedures. Trends Anal. Chem. 37, 61–72 (2012)

    Article  Google Scholar 

  6. Ellis, D.I., Brewster, V.L., Dunn, W.B., Allwood, J.W., Golovanon, A.P., Goodacre, R.: Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chem. Soc. Rev. 41, 5706–5727 (2012)

    Article  Google Scholar 

  7. Berrueta, L.A., Alonso-Salces, S.M., Héberger, K.: Supervised pattern recognition in food analysis. J. Chromatogr. A 1158, 196–214 (2007)

    Article  Google Scholar 

  8. Toher, D., Downey, G., Brendan Murphy, T.B.: A comparison of model-based and regression classification techniques applied to near infrared spectroscopic data in food authentication studies. Chemom. Intell. Lab. Syst. 89, 102–115 (2007)

    Article  Google Scholar 

  9. Karoui, R., Mazerolles, G., Dufour, E.: Spectroscopic techniques coupled with chemometric tools for structure and texture determinations in dairy products. Int. Dairy J. 13, 607 (2003)

    Article  Google Scholar 

  10. Jackson, J.E.: A User’s Guide to Principal Components. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  11. Naes, T.I., Fearn, T., Davies, T.: A User-Friendly Guide to Multivariate Calibration and Classification. NIR Publications, Chichester (2002)

    Google Scholar 

  12. Adams, M.J.: Chemometrics in Analytical Spectroscopy. Royal Society of Chemistry, Cambridge (1995)

    Google Scholar 

  13. Wold, S., Sjöström, M., Erikkson, L.: PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001)

    Article  Google Scholar 

  14. Larkin, P.J.: IR and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier Publisher, Waltham MA (2011)

    Google Scholar 

  15. Bayspec Inc. https://www.bayspec.com/category/spectroscopy/. Accessed 23 May 2021, model BRAM-1064-HR of 2010

  16. Ciaccheri, L., et al.: Blueberry juices: a rapid multi-analysis of quality indicators by means of dispersive Raman spectroscopy excited at 1064 nm. In: Chung, Y., Jin, W., Lee, B., Canning, J., Nakamura, K., Yuan, L. (eds.) 25th International Conference on Optical Fiber Sensors. Proceedings of SPIE, vol. 10323, p. 1032332 (2017)

    Google Scholar 

  17. Gordillo Arrobas, B., et al.: Raman spectroscopy for analyzing anthocyanins of lyophilized blueberries. In: IEEE Sensors 2015 Conference (2015). https://doi.org/10.1109/ICSENS.2015.7370224

  18. Ciaccheri, L., Mignani, A.G., Mencaglia, A.A., Petruccelli, R.: Characterization of artificial sweeteners using Raman spectroscopy. In: Compagnone, D., Baldini, F., Di Natale, C., Betta, G., Siciliano, P. (eds.) Sensors. LNEE, vol. 319, pp. 229–233. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09617-9_41

    Chapter  Google Scholar 

  19. Mignani, A.G., Ciaccheri, L., Mencaglia, A.A., Di Sanzo, R., Carabetta, S., Russo, M.T.: Dispersive Raman spectroscopy for the nondestructive and rapid assessment of the quality of Southern Italian honey types. J. Lightwave Technol. 34, 4479–4485 (2016)

    Article  Google Scholar 

  20. Mignani, A.G., Ciaccheri, L., Mencaglia, A.A., De Girolamo, A., Lippolis, V., Pascale, M.: Rapid screening of wheat bran contaminated by deoxynivalenol mycotoxin using Raman spectroscopy – a preliminary experiment. In: Lewis, E. (ed.) Sixth European Workshop on Optical Fibre Sensors. Proceedings of SPIE, vol. 9916, p. 99160W (2016)

    Google Scholar 

  21. Elterman, P.: Integrating cavity spectroscopy. Appl. Opt. 9, 2140–2142 (1970)

    Article  Google Scholar 

  22. Fry, E.S., Kattawar, G.W., Pope, R.M.: Integrating cavity absorption meter. Appl. Opt. 31, 2055–2065 (1992)

    Article  Google Scholar 

  23. Kirk, J.T.O.: Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity. Appl. Opt. 34, 4397–4408 (1995)

    Article  Google Scholar 

  24. Integrating sphere: custom design by GigaHertz-Optik. https://www.gigahertz-optik.com/en-us/products/cat/integrating-spheres/. Accessed 23 May 2021

  25. Visible spectrometer: Ocean Insight USB4000. https://www.oceaninsight.com/products/spectrometers/usb-series/. Accessed 23 May 2021

  26. Near-infrared spectrometer: Bayspec SuperGamut. https://www.bayspec.com/spectroscopy/nir-swir/. Accessed 23 May 2021

  27. Mignani, A.G., Ciaccheri, L., Mencaglia, A.A., Ottevaere, H., Samano Báca, E.E., Thienpont, H.: Optical measurements and pattern-recognition techniques for identifying the characteristics of beer and distinguishing Belgian beers. Sens. Actuators B 179, 140–149 (2013)

    Article  Google Scholar 

  28. Mignani, A.G., et al.: Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany. Anal. Bioanal. Chem. 399, 1315–1324 (2011). https://doi.org/10.1007/s00216-010-4408-y

    Article  Google Scholar 

  29. STS-VIS series. https://www.oceaninsight.com/products/spectrometers/. Accessed 23 May 2021

  30. http://www.kloner3d.com/. Accessed 23 May 2021

  31. https://www.phidgets.com/. Accessed 23 May 2021

  32. Mignani, A.G., Mencaglia, A.A., Baldi, M., Ciaccheri, L.: SpiderSpec: a low-cost compact colorimeter with IoT functionality. In: Lee, B., Lee, S.B., Rao, Y. (eds.) Fifth Asia-Pacific Optical Sensors Conference. Proceedings of SPIE, vol. 9655, p. 96550P (2015)

    Google Scholar 

  33. Mignani, A.G., Ciaccheri, L., Mencaglia, A.A., Tuccio, L., Agati, G.: Application of a LED-based reflectance sensor for assessing in situ the lycopene content of tomatoes (Lycopersicon esculentum Mill). In: Kim, M.S., Chao, K., Chin, B.A. (eds.) Sensing for Agriculture and Food Quality and Safety VII. Proceedings of SPIE, vol. 9488, p. 948806 (2015)

    Google Scholar 

  34. https://www.bankmycell.com/blog/how-many-phones-are-in-the-world#:~:text=How%20Many%20People%20Have%20Mobile%20Devices%20In%20The%20World%3F&text=According%20to%20GSMA%20real%2Dtime,population%20has%20a%20mobile%20device. Accessed 23 May 2021

  35. Rateni, G., Dario, P., Cavallo, F.: Smartphone-based food diagnostic technologies: a review. Sensors 17, 1453 (2017)

    Article  Google Scholar 

  36. Nelis, J.L.D., Tsagkaris, A.S., Dillon, M.J., Hajslova, J., Elliott, C.T.: Smartphone-based optical assays in the food safety field. Trends Anal. Chem. 129, 115934 (2020)

    Article  Google Scholar 

  37. Ross, G.M.S., Bremer, M.G.E.G., Nielen, M.W.F.: Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays. Anal. Bioanal. Chem. 410(22), 5353–5371 (2018). https://doi.org/10.1007/s00216-018-0989-7

    Article  Google Scholar 

  38. https://tellspec.com/. Accessed 23 May 2021

  39. https://www.consumerphysics.com/. Accessed 23 May 2021

  40. Ciaccheri, L., Adinolfi, B., Mencaglia, A.A., Pellegrini Strozzi, C., Marinelli, C., Mignani, A.G.: Smartphone-connected pocket spectrometer and artificial intelligence for analyzing the quality of olive oil. In: Proceedings 26th International Conference on Optical Fiber Sensors. Optical Society of America (2018). ThE79.pdf

    Google Scholar 

  41. Ciaccheri, L., Adinolfi, B., Mencaglia, A.A., Pellegrini Strozzi, C., Mignani, A.G.: Measuring water residue in olive oil by means of a smartphone-connected pocket spectrometer and artificial intelligence. In: Kalli, K., Brambilla, G., O’Keeffe, S. (eds.) Seventh European Workshop on Optical Fibre Sensors. Proceedings of SPIE, vol. 11199, p. 111993H (2019)

    Google Scholar 

Download references

Acknowledgements

The following funding are acknowledged for co-funding the listed projects: MIUR-Cluster Agri-Food, “Safe&Smart” project; MIUR-PON “Fingerimball” project, MIPAAF-Era-net-SusFood, “SUNNIVA” project; Italian MAE-ISERD Italy-Israel “QR4Oil” project, Spanish Project P11-AGR-7843; DWTC-IAP; FWO; GOA; the 6th FP European Network of Excellence on Micro-Optics (NEMO); the 7th FP European Network of Excellence on Biophotonics (Photonics 4 Life); Methusalem and Hercules Foundations and the OZR-Vrije Universiteit Brussel; Harbin Engineering University, P.R. China. The Ente Cassa di Risparmio di Firenze is acknowledged for co-funding the Raman spectroscopy instrument. Verifood Ltd and Consumer Physics are acknowledged for providig the SCiO device and access to spectroscopic data. The following colleagues are acknowledged for successfully working together: Giovanni Agati, Cristina Attilio, Massimo Baldi, Sonia Carabetta, Angelo Cichelli, Antonio Cimato, Lanfranco Conte, Annalisa De Girolamo, Rosa Di Sanzo, Maria Lourdes González-Miret, Belen Gordillo-Arrobas, Francisco J. Heredia, Vincenzo Lippolis, Gabriele Manca, Milena Marega, Cristian Marinelli, Heidi Ottevaere, Michelangelo Pascale, Clemente Pellegrini Strozzi, Francisco J. Rodríguez-Pulido, Mariateresa Russo, Edgar Eugenio Samano Baca, Carla M. Stinco, Hugo Thienpont, Lorenza Tuccio, Tom Verschooten, Cosimo Trono, Mor Wilk, Libo Yuan, Tingting Yuan, Shaoxian Zhang.

Disclaimer.

Anna G. Mignani is currently seconded at the European Research Council Executive Agency of the European Commission. Her views expressed in this paper are purely those of the writer and may not in any circumstances be regarded as stating an official position of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Ciaccheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ciaccheri, L., Adinolfi, B., Mencaglia, A.A., Mignani, A.G. (2023). Optical Spectroscopy for Fingerprinting Food: A Photonic Tasting. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08136-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08135-4

  • Online ISBN: 978-3-031-08136-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics