Skip to main content

Amorphous Silicon Based Biosensor for Food Quality Assessment: Feasibility Study on Milk’s Fat Content

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 918))

Included in the following conference series:

  • 565 Accesses

Abstract

This paper presents a study on a Lab-on-Chip system based on the optical interaction between biological material and optical devices for the detection of analyte’s properties inside a solution or mixture. The reported LoC performs both interaction and detection phase in the same chip, taking advantage of a polymer waveguiding structure optically coupled with a thin-film amorphous silicon photodiode fabricated on a single glass substrate. Before its actual implementation in biomolecular recognition applications, we report a feasibility study on the detection of fat content in milk, carried out by interpolating simulated data with the measured electro-optical response of the sensor. The sensing demonstration highlights a limit of detection of 106 ppm and a sensitivity of about 8.7 pA/(g/dL), encouraging further developments and an actual implementation in food quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vurchio, F., et al.: Grasping and releasing agarose micro beads in water drops. Micromachines 10(7), 436 (2019)

    Article  Google Scholar 

  2. Buzzin, A., Veroli, A., Alam, B., Maiolo, L., Marrani, M., Muzi, M.: Polymer nano-sieve for particle filtering in lab-on-chip devices. In: AIP Conference Proceedings, vol. 2145, no. 1, p. 020013. AIP Publishing LLC (2019)

    Google Scholar 

  3. Luisetto, I., et al.: An interdisciplinary approach to the nanomanipulation of SiO2 nanoparticles: design, fabrication and feasibility. Appl. Sci. 8, 2645 (2018)

    Article  Google Scholar 

  4. Duncombe, T.A., Tentori, A.M., Herr, A.E.: Microfluidics: reframing biological enquiry. Nat. Rev. Mol. Cell Biol. 16(9), 554–567 (2015)

    Article  Google Scholar 

  5. Monosik, R., Stredansky, M., Sturdik, E.: Biosensors - classification, characterization and new trends. Acta chimica slovaca 5(1), 109–120 (2012)

    Article  Google Scholar 

  6. Kaushik, A., Mujawar, M.A.: Point of care sensing devices: better care for everyone. Sensors 18(12), 4303 (2018)

    Article  Google Scholar 

  7. Buzzin, A., et al.: Integrated 3D microfluidic device for impedance spectroscopy in lab-on-chip systems. In: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 224–227. IEEE (2019)

    Google Scholar 

  8. Srinivasan, B., Tung, S.: Development and applications of portable biosensors. J. Lab. Autom. 20(4), 365–389 (2015)

    Article  Google Scholar 

  9. Fan, X., White, I.M., Shopova, S.I., Zhu, H., Suter, J.D., Sun, Y.: Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620(1–2), 8–26 (2008)

    Article  Google Scholar 

  10. Laschuk, N.O., et al.: Rational design of a material for rapid colorimetric Fe2+ detection. Mater. Des. 107, 18–25 (2016)

    Google Scholar 

  11. Veroli, A., et al.: High circular dichroism and robust performance in planar plasmonic metamaterial made of nano-comma-shaped resonators. JOSA B 36(11), 3079–3084 (2019)

    Article  Google Scholar 

  12. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083), 508–511 (2006)

    Article  Google Scholar 

  13. Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nanosci. Technol. Collect. Rev. Nat. J. 308–319 (2010)

    Google Scholar 

  14. Asquini, R., Buzzin, A., Caputo, D., de Cesare, G.: Integrated evanescent waveguide detector for optical sensing. IEEE Trans. Compon. Packaging Manuf. Technol. 8(7), 1180–1186 (2018)

    Article  Google Scholar 

  15. Buzzin, A., Asquini, R., Caputo, D., de Cesare, G.: On-glass integrated SU-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: feasibility study on hemoglobin sensing. Sensors 21(2), 415 (2021)

    Article  Google Scholar 

  16. Salgueiro, L., Martins, A.P., Correia, H.: Raw materials: the importance of quality and safety. A review. Flavour Fragr. J. 25(5), 253–271 (2010)

    Article  Google Scholar 

  17. Nascimento, C.F., Santos, P.M., Pereira-Filho, E.R., Rocha, F.R.: Recent advances on determination of milk adulterants. Food Chem. 221, 1232–1244 (2017)

    Article  Google Scholar 

  18. Savi, P., Naishadham, K., Quaranta, S., Giorcelli, M., Bayat, A., Ramella, C.: Design of a graphene-loaded slotted ring resonator for sensor applications. In: IEEE European Conference on Antennas and Propagation (EUCAP), pp. 2564–2567 (2017)

    Google Scholar 

  19. Alam, B., Veroli, A., Caló, G., Petruzzelli, V., Benedetti, A.: Multilayer optical routing by means of vertical directional coupler with long range surface plasmons. AIP Conf. Proc. 2145(1), 020017 (2019)

    Article  Google Scholar 

  20. Gizzi, C., Asquini, R., d’Alessandro, A.: A polarization independent liquid crystal assisted vertical coupler switch. Mol. Cryst. Liq. Cryst. 421, 95–105 (2004)

    Article  Google Scholar 

  21. Wang, C., Cho, S.J., Kim, N.Y.: SU-8-based structural material for microelectronic processing applications. Mater. Manuf. Process. 28(8), 947–952 (2013)

    Google Scholar 

  22. de Cesare, G., Nascetti, A., Caputo, D.: Amorphous silicon p-i-n structure acting as light and temperature sensor. Sensors 15, 12260–12272 (2015)

    Article  Google Scholar 

  23. Tucci, M., Serenelli, L., De Iuliis, S., Izzi, M., de Cesare, G., Caputo, D.: Back contact formation for p-type based a-Si:H/c-Si heterojunction solar cells. Phys. Status Solidi (C) 8, 932–935 (2011)

    Article  Google Scholar 

  24. Nathan, A., Kumar, A., Sakariya, K., Servati, P., Sambandan, S., Striakhilev, D.: Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic. IEEE J. Solid-State Circuits 39, 1477–1486 (2004)

    Article  Google Scholar 

  25. Buzzin, A. Cupo, S., Giovine, E., de Cesare, G., Belfiore, N.P.: Compliant nano-pliers as a biomedical tool at the nanoscale: design, simulation and fabrication. Micromachines 11, 1087 (2020)

    Google Scholar 

  26. Calhoun, W.R., Maeta, H., Roy, S., Bali, L.M., Bali, S.: Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures. J. Dairy Sci. 93(8), 3497–3504 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Buzzin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buzzin, A., Asquini, R., Caputo, D., de Cesare, G. (2023). Amorphous Silicon Based Biosensor for Food Quality Assessment: Feasibility Study on Milk’s Fat Content. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08136-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08135-4

  • Online ISBN: 978-3-031-08136-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics