Skip to main content

Modeling of an Organic Thin Film Transistor as Temperature Sensor

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2021)

Abstract

The paper investigates the temperature dependence of the electrical characteristics of an organic thin film transistor (OTFT), through the development of an analytical model based on the MTR (multiple trapping and release) mechanism, that is related to an exponential density of states in the organic semiconductor layer at the insulator interface. The aim is to realize a simple single-ended organic sensor, consisting of a diode-connected OTFT, with a high sensitivity and linearity in a wide temperature range (from 230 to 330 K). The fabricated sensor shows the maximum linearity of 99.95% at a bias current of 22 nA with a sensitivity of about 100 mV/K, exceeding that of silicon-based sensors, and a good stability with an error lower than 1%. The model used to describe the device behavior demonstrates that the linearity is given by the compensation of two non-linear functions of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsui, H., Takeda, Y., Tokito, S.: Flexible and printed organic transistors: from materials to integrated circuits. Org. Electron. 75, 105432 (2019)

    Article  Google Scholar 

  2. Liu, Z., et al.: Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9(1), 83 (2020)

    Article  Google Scholar 

  3. Botta, A., et al.: Optoelectronic properties of poly(N-alkenyl-carbazole)s driven by polymer stereoregularity. J. Polym. Sci. Pol. Chem. 56(2), 242–251 (2018)

    Google Scholar 

  4. Liguori, R., et al.: Stereoregular polymers with pendant carbazolyl groups: synthesis, properties and optoelectronic applications. Synthetic Met. 246, 185–194 (2018)

    Article  Google Scholar 

  5. Li, S., et al.: Low-voltage operated organic thin-film transistors with mobility exceeding 10 cm2/vs. IEEE Electr. Device Lett. 42(3), 398–401 (2021)

    Article  Google Scholar 

  6. Liguori, R., et al.: Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric. Org. Electron. 28, 147–154 (2016)

    Article  Google Scholar 

  7. Cavallari, M.R., et al.: Organic thin-film transistors as gas sensors: a review. Materials 14(1), 1–32 (2021)

    Google Scholar 

  8. Falco, A., et al.: Simulation and fabrication of polarized organic photodiodes. In: Proceedings of IEEE Sensors, SENSORS 2016, art. 7808585 (2017)

    Google Scholar 

  9. He, D.D., et al.: An integrated organic circuit array for flexible large-area temperature sensing. In: 2010 IEEE International Solid-State Circuit Conference, ISSCC, pp. 142–143 (2010)

    Google Scholar 

  10. Katerinopoulou, D., et al.: Large-area all-printed temperature sensing surfaces using novel composite thermistor materials. Adv. Electron. Mater. 5(2), 1800605 (2019)

    Article  Google Scholar 

  11. Someya, T., et al.: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. P. Natl. Acad. Sci. USA 102(35), 12321–12325 (2005)

    Article  Google Scholar 

  12. Rullyani, C., et al.: Stimuli-responsive polymer as gate dielectric for organic transistor sensors. Org. Electron. 85, 105818 (2020)

    Article  Google Scholar 

  13. Lai, S., Viola, F.A., Cosseddu, P., Bonfiglio, A.: Floating gate, organic field-effect transistor-based sensors towards biomedical applications fabricated with large-area processes over flexible substrates. Sensors-Basel 18, 688 (2018)

    Article  Google Scholar 

  14. Liguori, R., et al.: Insights into interface treatments in p-channel organic thin-film transistors based on a novel molecular semiconductor. IEEE T. Electron. Dev. 64(5), 2338–2344 (2017)

    Article  Google Scholar 

  15. Liguori, R., Rubino, A.: Metastable light induced effects in pentacene. Org. Electron. 15(9), 1928–1935 (2014)

    Article  Google Scholar 

  16. Wang, X., Dodabalapur, A.: Carrier velocity in amorphous metal-oxide-semiconductor transistors. IEEE T. Electron Dev. 68(1), 125–131 (2021)

    Article  Google Scholar 

  17. Servati, P., Nathan, A., Amaratunga, G.A.J.: Generalized transport-band field-effect mobility in disordered organic and inorganic semiconductors. Phys. Rev. B 74, 245210 (2006)

    Article  Google Scholar 

  18. Lee, S., Nathan, A.: Localized tail state distribution in amorphous oxide transistors deduced from low temperature measurements. Appl. Phys. Lett. 101(11), 113502 (2012)

    Article  Google Scholar 

  19. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  20. Hoshino, K., Wager, J.F.: Operating temperature trends in amorphous In-Ga-Zn-O thin-film transistors. IEEE T. Electron Dev. 31(8), 818–820 (2010)

    Article  Google Scholar 

  21. Kalb, W.L., et al.: Calculating the trap density of states in organic field-effect transistors from experiment: a comparison of different methods. Phys. Rev. B 81, 035327 (2010)

    Article  Google Scholar 

  22. Rao, S., et al.: 85–440 K temperature sensor based on a 4H-SiC Schottky diode. IEEE Sens. J. 16, 6537–6542 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalba Liguori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liguori, R., Licciardo, G.D., Di Benedetto, L. (2023). Modeling of an Organic Thin Film Transistor as Temperature Sensor. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08136-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08135-4

  • Online ISBN: 978-3-031-08136-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics