Skip to main content

Time Continuous VCII-Based Fully Analog Interface for Differential Capacitive Sensors

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2021)

Abstract

In this paper the authors present a current mode approach for the readout of differential capacitive sensors. The main novelty lies in the use of the relatively new second generation voltage conveyor (VCII) active block to process signals in the current domain and then operate an inherent conversion to a voltage output, so to make the readout operation compatible with a voltage mode system. This approach allows to achieve a high and tunable sensitivity, even at low supply voltages and, thanks to a simple current feedback operation, the insensitiveness to stray capacitances is achieved as well. Waiting for IC fabrication, preliminary measurements have been conducted using commercial components (AD844) to implement the VCII, showing a constant interface sensitivity up to 412 mV/pF and a maximum linearity error of 1.9%FS with the sensor baseline in the picofarad range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fusacchia, P., et al.: A low cost fully integrable in a standard CMOS technology portable system for the assessment of wind conditions. Proc. Eng. 168, 1024–1027 (2016)

    Article  Google Scholar 

  2. Leoni, A., et al.: Energy harvesting optimization for built-in power replacement of electronic multisensory architecture. AEU Int. J. Electron. Commun. 107, 170–176 (2019)

    Article  Google Scholar 

  3. Pantoli, L., et al.: An IC architecture for RF energy harvesting systems. J. Commun. Softw. Syst. 13(2), 96–100 (2017)

    Article  Google Scholar 

  4. Polak, L., et al.: CMOS current feedback operational amplifier-based relaxation generator for capacity to voltage sensor interface. Sensors 18, 4488 (2018)

    Article  Google Scholar 

  5. Brookhuis, R., Lammerink, T., Wiegerink, R.: Differential capacitive sensing circuit for a multi-electrode capacitive force sensor. Sens. Actuators A Phys. 234, 168–179 (2015)

    Article  Google Scholar 

  6. Royo, G., et al.: Programmable low-power low-noise capacitance to voltage converter for MEMS accelerometers. Sensors 17, 67 (2016)

    Article  MathSciNet  Google Scholar 

  7. George, B., Mohan, N., Kumar, V.: A linear variable differential capacitive transducer for sensing planar angles. IEEE Trans. Instrum. Meas. 57, 736–742 (2008)

    Article  Google Scholar 

  8. Mochizuki, K., Watanabe, K., Masuda, T.: A high-accuracy high-speed signal processing circuit of differential-capacitance transducers. IEEE Trans. Instrum. Meas. 47, 1244–1247 (1998)

    Article  Google Scholar 

  9. Dimitropoulos, P., et al.: A low-power/low-noise readout circuit for integrated capacitive sensors. IEEE Sens. J. 6, 755–769 (2006)

    Article  Google Scholar 

  10. Shiah,J.; Rashtian,H.; Mirabbasi,S. A low-noise high-sensitivity readout circuit for MEMS capacitive sensors. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Paris, France

    Google Scholar 

  11. Barile, G., et al.: A CMOS full-range linear integrated interface for differential capacitive sensor readout. Sens. Actuators A Phys. 281, 130–140 (2018)

    Article  Google Scholar 

  12. Ferri, G., et al.: Full range analog Wheatstone bridge-based automatic circuit for differential capacitance sensor evaluation. Int. J. Circuit Theory Appl. 45, 2149–2156 (2016)

    Article  Google Scholar 

  13. Sisinni, E., et al.: Full-analog parasitic capacitance compensation for AC-excited differential sensors. IEEE Trans. Instrum. Meas. 69(8), 5890–5899 (2020)

    Article  Google Scholar 

  14. Pennisi, S.: High-performance and simple CMOS interface circuit for differential capacitive sensors. IEEE Trans Circuits Syst. II Express Briefs 52, 327–330 (2005)

    Article  Google Scholar 

  15. Scotti, G., et al.: A 88-uA 1-MHz stray-insensitive CMOS current-mode interface IC for differential capacitive sensors. IEEE Trans. Circuits Syst.I Regul. Pap. 61, 1905–1916 (2014)

    Article  Google Scholar 

  16. Barile, G., Safari, L., Ferri, G., Stornelli, V.: A VCII-Based stray insensitive analog interface for differential capacitance sensors. Sensors 19, 3545 (2019)

    Article  Google Scholar 

  17. Ferri, G., Pennisi, S.: A 1.5-V Current-Mode Capacitance Multiplier, vol. 1998, pp. 9–12, December 1998

    Google Scholar 

  18. De Marcellis, A., et al.: A novel low-voltage low-power fully differential voltage and current gained CCII for floating impedance simulations. Microelectron. J. 40, 20–25 (2009)

    Article  Google Scholar 

  19. Stornelli, V., Ferri, G.: A single current conveyor-based low voltage low power bootstrap circuit for electrocardiography and electroencephalography acquisition systems. Analog Integr. Circuits. Signal Process 79, 171–175 (2014)

    Article  Google Scholar 

  20. Safari, L., et al.: A new low-voltage low-power dual-mode VCII-based simo universal filter. Electronics 8, 765 (2019)

    Article  Google Scholar 

  21. Pantoli, L., et al.: Electronic interface for lidar system and smart cities applications. J. Commun. Softw. Syst. 15, 118–125 (2019)

    Google Scholar 

  22. Barile, G., et al.: A new high drive class-AB FVF-based second generation voltage conveyor. IEEE Trans. Circuits Syst. II Express Briefs 67, 405–409 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Barile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barile, G. et al. (2023). Time Continuous VCII-Based Fully Analog Interface for Differential Capacitive Sensors. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08136-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08135-4

  • Online ISBN: 978-3-031-08136-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics