Abstract
We present the development of a compact, easy-to-use device that implements a 3D microfluidic network with sensing sites, based on impedance spectroscopy techniques. The aim is to provide a Lab-on-Chip approach in applications where classification of microparticles is required, as well as morphological and volume studies. A complex colloidal mixture made of cell-resembling agarose microbeads suspended in aqueous medium was arranged to carry out microfluidic and impedance spectroscopy tests on the device. Preliminary impedance measurements show the effectiveness of the counting sub-system, displaying a good sensitivity in detecting the passing of a single bead over a sensing site. These results confirm the effectiveness of the system, and encourage further developments toward an implementation in actual biomedical scenarios. Possible applications can be found in 3D cell-cultures monitoring, blood analysis and diagnosis and blood-related diseases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gabriel, C., Gabriel, S., Corthout, Y.E.: The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231 (1996)
Xu, Y., Xie, X., Duan, Y., Wang, L., Cheng, Z., Cheng, J.: A review of impedance measurements of whole cells. Biosens. Bioelectron. 77, 824–836 (2016)
Veroli, A., et al.: High circular dichroism and robust performance in planar plasmonic metamaterial made of nano-comma-shaped resonators. JOSA B 36(11), 3079–3084 (2019)
Grosse, C., Tirado, M.C.: Low-frequency dielectric spectroscopy of colloidal suspensions. J. Non-Cryst. Solids 305(1–3), 386–392 (2002)
Song, H., et al.: A microfluidic impedance flow cytometer for identification of differentiation state of stem cells. Lab Chip 13(12), 2300–2310 (2013)
Diez-Silva, M., Dao, M., Han, J., Lim, C.T., Suresh, S.: Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35(5), 382–388 (2010)
Canali, C., Heiskanen, A., Muhammad, P., Pettersen, F.J., Hemmingsen, M., Emnéus, J.: Bioimpedance monitoring of 3D cell culturing - complementary electrode configurations for enhanced spatial sensitivity. Biosens. Bioelectron. 63, 72–79 (2015)
Buzzin, A., Asquini, R., Caputo, D., de Cesare, G.: On-glass integrated SU-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: feasibility study on hemoglobin sensing. Sensors 21(2), 415 (2021)
Costantini, F., et al.: Lab-on-chip system combining a microfluidic-ELISA with an array of amorphous silicon photosensors for the detection of celiac disease epitopes. Sens. Bio-Sens. Res. 6, 51–58 (2015)
Buzzin, A., Veroli, A., Alam, B., Maiolo, L., Marrani, M., Muzi, M.: Polymer nano-sieve for particle filtering in lab-on-chip devices. In: AIP Conference Proceedings, vol. 2145, no. 1, p. 020013. AIP Publishing LLC (2019)
Piedimonte, P., et al.: Silicon nanowires to detect electric signals from living cells. Mater. Res. Exp. 6(8), 084005 (2019)
Buzzin, A., Cupo, S., Giovine, E., de Cesare, G., Belfiore, N.P.: Compliant nano-pliers as a biomedical tool at the nanoscale: design simulation and fabrication. Micromachines 11(12), 1087 (2020)
Pal, N., Sharma, S., Gupta, S.: Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique. Biosens. Bioelectron. 77, 270–276 (2016)
Iannascoli, L., et al.: Micro-incubator based on lab-on-glass technology for nanosatellite missions. In: Di Francia, G., et al. (eds.) AISEM 2019. LNEE, vol. 629, pp. 83–89. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37558-4_13
Stallcop, L.E., et al.: Razor-printed sticker microdevices for cell-based applications. Lab Chip 18(3), 451–462 (2018)
Pecora, A., et al.: Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid-State Electron. 52(3), 348–352 (2008)
Buzzin, A., et al.: Integrated 3D microfluidic device for impedance spectroscopy in lab-on-chip systems. In: International Workshop on Advances in Sensors and Interfaces, pp. 224–227. IEEE (2019)
Vurchio, F., et al.: Grasping and releasing agarose micro beads in water drops. Micromachines 10(7), 436 (2019)
Du, N., Chou, J., Kulla, E., Floriano, P.N., Christodoulides, N., McDevitt, J.T.: A disposable bio-nano-chip using agarose beads for high performance immunoassays. Biosens. Bioelectron. 28(1), 251–256 (2011)
Nweke, M.C., McCartney, R.G., Bracewell, D.G.: Mechanical characterisation of agarose-based chromatography resins for biopharmaceutical manufacture. J. Chromatogr. A 1530, 129–137 (2017)
Carminati, M.: Advances in high-resolution microscale impedance sensors. J. Sens. 2017, 1–15 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Buzzin, A. et al. (2023). Integrated Hybrid Glass-Plastic Chip for Sorting and Counting of Microparticles in Biomedical Applications. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-08136-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08135-4
Online ISBN: 978-3-031-08136-1
eBook Packages: EngineeringEngineering (R0)