Skip to main content

Stacked Tensegrity Mechanism for Medical Application

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2022 (ARK 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 24))

Included in the following conference series:

  • 1170 Accesses

Abstract

In this article a multi-segmented planar tensegrity mechanism was presented. This mechanism has a three-segment structure with each segment residing on top of another. The size of the segments may decrease proportionally from base to top, resulting in a tapered shape from base to tip like an elephant trunk. The system was mechanically formulated as having linear springs and cables functioning as actuators. The singularities, as well as the stability of the parallel mechanism, were analyzed by using the principle of minimum energy. Optimization was also done to obtain the greatest angular deflection for a segment according to a ratio between the size of the base and the moving platform of the robotic system. The result of this work is a family of mechanisms that can generate the same workspace for different stability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeshmukhametov, A., Koganezawa, K., Yamamoto, Y.: A novel discrete wire-driven continuum robot arm with passive sliding disc: design, kinematics and passive tension control. Robotics 8(3), 1–18 (2019). https://doi.org/10.3390/ROBOTICS8030051

    Article  Google Scholar 

  2. Degani, A., Choset, H., Zubiate, B., Ota, T., Zenati, M.: Highly articulated robotic probe for minimally invasive surgery. In: Proceeding of 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS 2008 - Personalized Healthcare through Technology, pp. 3273–3276, May (2008). https://doi.org/10.1109/iembs.2008.4649903

  3. Wang, H.C., Cui, S.H., Wang, Y., Song, C.L.: A hybrid electromagnetic and tendon-driven actuator for minimally invasive surgery. Actuators 9(3), 92 (2020). https://doi.org/10.3390/act9030092

    Article  Google Scholar 

  4. Hwang, M., Kwon, D.S.: K-FLEX: a flexible robotic platform for scar-free endoscopic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 16(2), e2078 (2020). https://doi.org/10.1002/rcs.2078

    Article  Google Scholar 

  5. Yeshmukhametov, A., Koganezawa, K., Yamamoto, Y.: Design and kinematics of cable-driven continuum robot Arm with universal joint backbone. In: 2018 IEEE International Conference on Robotics and Biomimetics, ROBIO 2018, pp. 2444–2449 (2018). https://doi.org/10.1109/ROBIO.2018.8665186

  6. Suzumori, K., Iikura, S., Tanaka, H.: Development of flexible microactuator and its applications to robotic mechanisms. In: Proceedings of International Conference on Robotics and Automation, vol. 2, pp. 1622–1627, April 1991. https://doi.org/10.1109/robot.1991.131850

  7. Xu, K., Zhao, J., Member, S., Fu, M.: Development of the SJTU Unfoldable Robotic System (SURS) for single port laparoscopy. IEEE/ASME Trans. Mechatronics 20(5), 2133–2145 (2014)

    Article  Google Scholar 

  8. Whitman, J., Zevallos, N., Travers, M., Choset, H.: Snake robot urban search after the 2017 Mexico City earthquake. In: 2018 International Symposium on Safety, Security and Rescue Robotics, SSRR 2018, pp. 7–12 (2018). https://doi.org/10.1109/SSRR.2018.8468633

  9. Li, Z., Feiling, J., Ren, H., Yu, H.: A novel tele-operated flexible robot targeted for minimally invasive robotic surgery. Engineering 1(1), 073–078 (2015). https://doi.org/10.15302/J-ENG-2015011

    Article  Google Scholar 

  10. Furet, M., Lettl, M., Wenger, P.: Kinematic analysis of planar tensegrity 2-X manipulators. In: Lenarcic, J., Parenti-Castelli, V. (eds.) ARK 2018. SPAR, vol. 8, pp. 153–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93188-3_18

    Chapter  Google Scholar 

  11. Wenger, P., Chablat, D.: Kinetostatic analysis and solution classification of a class of planar tensegrity mechanisms. Robotica 37(7), 1214–1224 (2019). https://doi.org/10.1017/S026357471800070X

    Article  Google Scholar 

  12. Li, Z., Wu, L., Ren, H., Yu, H.: Kinematic comparison of surgical tendon-driven manipulators and concentric tube manipulators. In: Mechanism and Machine Theory, vol. 107, pp. 148–165, June 2016 (2017). https://doi.org/10.1016/j.mechmachtheory.2016.09.018

  13. Le, H.M., Do, T.N., Cao, L., Phee, S.J.: Towards active variable stiffness manipulators for surgical robots. In: Proceeding of International Conference on Robotics and Automation, pp. 1766–1771 (2017). https://doi.org/10.1109/ICRA.2017.7989209

  14. Shang, J., et al.: A single-port robotic system for Transanal microsurgery-design and validation. IEEE Robot. Autom. Lett. 2(3), 1510–1517 (2017). https://doi.org/10.1109/LRA.2017.2668461

    Article  Google Scholar 

  15. Haber, G.P., et al.: SPIDER surgical system for urologic procedures with laparoendoscopic single-site surgery: from initial laboratory experience to first clinical application. Eur. Urol. 61(2), 415–422 (2012). https://doi.org/10.1016/j.eururo.2010.12.033

    Article  Google Scholar 

  16. Abbott, D.J., Becke, C., Rothstein, R.I., Peine, W.J.: Design of an endoluminal NOTES robotic system. In: EEE International Workshop on Intelligent Robots and Systems, pp. 410–416 (2007). https://doi.org/10.1109/IROS.2007.4399536

  17. Roh, S.G. et al.: Development of the SAIT single-port surgical access robot slave arm based on RCM mechanism. In: Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2015, pp. 5285–5290, November 2015. https://doi.org/10.1109/EMBC.2015.7319584

  18. Hu, X., Chen, A., Luo, Y., Zhang, C., Zhang, E.: Steerable catheters for minimally invasive surgery: a review and future directions. Comput. Assist. Surg. 23(1), 21–41 (2018). https://doi.org/10.1080/24699322.2018.1526972

    Article  Google Scholar 

  19. Akopov, A., Artioukh, D.Y., Molnar, T.F.: Surgical staplers: the history of conception and adoption. Ann. Thorac. Surg. 112, 1716–1721 (2021)

    Article  Google Scholar 

  20. Bolanos, H., Norwalk, E., Sherts, C.R., Southport, A.T. Pel- letier, Wallingford.: ENDOSCOPICSTAPLER, US Patent 690269 (1997)

    Google Scholar 

  21. Milliman, L., et al.: Surgical Stapling Apparatus, US Patent 586531 (1999)

    Google Scholar 

  22. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Eng. Commun. Comput. 9(5), 433–461 (1999)

    Article  MathSciNet  Google Scholar 

  23. Behzadipour, S., Khajepour, A.: Stiffness of cable-based parallel manipulators with application to stability analysis. J. Mech. Des. Trans. ASME 128(1), 303–310 (2006). https://doi.org/10.1115/1.2114890

    Article  Google Scholar 

  24. Chadefaux, T.: The Triggers of war: disentangling the spark from the powder keg. SSRN Electron. J. 49 pages April 2014. https://doi.org/10.2139/ssrn.2409005

  25. Zhao, W., Pashkevich, A., Klimchik, A., Chablat, D.: Elastostatic modeling of multi-link flexible manipulator based on two-dimensional dual-triangle tensegrity mechanism. J. Mech. Robot. 14(2), 1–31 (2022). https://doi.org/10.1115/1.4051789

    Article  Google Scholar 

  26. Yang, J., Pitarch, E.P., Potratz, J., Beck, S., Abdel-Malek, K.: Synthesis and analysis of a flexible elephant trunk robot. Adv. Robot. 20(6), 631–659 (2006). https://doi.org/10.1163/156855306777361631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Chablat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khanzode, D., Jha, R., Duchalais, E., Chablat, D. (2022). Stacked Tensegrity Mechanism for Medical Application. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_16

Download citation

Publish with us

Policies and ethics