Skip to main content

Geometric Insights into Kinematically-Singular Configurations of Planar Continuum Robots

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2022 (ARK 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 24))

Included in the following conference series:

Abstract

Continuum robots present designers with the challenges of interpreting the geometric conditions that lead to singularity. Unlike serial robots, where it is easy to relate Plücker line coordinates to physical locations fixed in each link-attached frame, such geometric understanding is hard to visualize for continuum robots. In this paper, we explore the conditions for the singularity of continuum robots comprised of two and three segments. We derive the conditions for singularity and visualize these singular configurations with their corresponding conditions of singularity. We start the analysis assuming circular curvature, and then we discuss how the same analysis can be extended to non-circular curvature cases. We also define safety regions for singularity that depend on an assumed modal shape variation due to the elastic deflections of these robots. These safety zones can be used to produce designs and path plans that guarantee singularity-free performance despite norm-bounded deflections in configuration space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use \(^{a}\mathbf {x}\) to designate the representation of vector \(\mathbf {x}\) in a frame {A} with axes \(\hat{\mathbf {x}}_a\), \(\hat{\mathbf {y}}_a\), \(\hat{\mathbf {z}}_a\).

References

  1. Bottema, O., Roth, B.: Theoretical Kinematics, vol. 24. Courier Corporation, North Chelmsford (1990)

    Google Scholar 

  2. Briot, S., Goldsztejn, A.: Singularity conditions for continuum parallel robots. IEEE Trans. Robot. 38, 1–19 (2021). https://doi.org/10.1109/TRO.2021.3076830

    Article  Google Scholar 

  3. Chirikjian, G., Burdick, J.: A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 10(3), 343–354 (1994). https://doi.org/10.1109/70.294209

    Article  Google Scholar 

  4. Gilbert, H.B., Hendrick, R.J., Webster, R.J., III.: Elastic stability of concentric tube robots: a stability measure and design test. IEEE Trans. Robot. 32(1), 20–35 (2016). https://doi.org/10.1109/TRO.2015.2500422

    Article  Google Scholar 

  5. Gravagne, I., Walker, I.: Manipulability and force ellipsoids for continuum robot manipulators. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 1, pp. 304–311 (2001). https://doi.org/10.1109/IROS.2001.973375

  6. Jones, B.A., Walker, I.D.: Limiting-case analysis of continuum trunk kinematics. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1363–1368 (2007). https://doi.org/10.1109/ROBOT.2007.363174

  7. Mayer, A., Sawodny, O.: Singularity and workspace analysis for modular continuum robots. In: 2018 IEEE Conference on Control Technology and Applications (CCTA), pp. 280–285 (2018). https://doi.org/10.1109/CCTA.2018.8511408

  8. Merlet, J.P.: Singular configurations of parallel manipulators and Grassmann geometry. Int. J. Robot. Res. 8(5), 45–56 (1989)

    Article  Google Scholar 

  9. Mochiyama, H., Kobayashi, H.: The shape Jacobian of a manipulator with hyper degrees of freedom. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 4, pp. 2837–2842 (1999). https://doi.org/10.1109/ROBOT.1999.774027

  10. Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Measure. Control 108(3), 163–171 (1986). https://doi.org/10.1115/1.3143764

  11. Sarli, N., Giudice, G.D., De, S., Dietrich, M.S., Herrell, S.D., Simaan, N.: TURBot: a system for robot-assisted transurethral bladder tumor resection. IEEE/ASME Trans. Mechatron. 24(4), 1452–1463 (2019). https://doi.org/10.1109/TMECH.2019.2918137

    Article  Google Scholar 

  12. Simaan, N., Shoham, M.: Singularity analysis of a class of composite serial in-parallel robots. IEEE Trans. Robot. Autom. 17(3), 301–311 (2001). https://doi.org/10.1109/70.938387

    Article  Google Scholar 

  13. Simaan, N., Taylor, R., Flint, P.: A dexterous system for laryngeal surgery. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2004, vol. 1, pp. 351–357 (2004). https://doi.org/10.1109/ROBOT.2004.1307175

  14. Wang, L., Simaan, N.: Investigation of Error Propagation in Multi-backbone Continuum Robots. In: Lenarčič, J., Khatib, O. (eds.) Advances in Robot Kinematics, pp. 385–394. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06698-1_40

    Chapter  Google Scholar 

  15. Wang, L., Simaan, N.: Geometric calibration of continuum robots: joint space and equilibrium shape deviations. IEEE Trans. Robot. 35(2), 387–402 (2019). https://doi.org/10.1109/TRO.2018.2881049

    Article  Google Scholar 

  16. Xu, K., Simaan, N.: Analytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integrals. J. Mech. Robot. 2(1), 011006 (2009). https://doi.org/10.1115/1.4000519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Simaan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shihora, N., Simaan, N. (2022). Geometric Insights into Kinematically-Singular Configurations of Planar Continuum Robots. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_26

Download citation

Publish with us

Policies and ethics