Abstract
Continuum robots present designers with the challenges of interpreting the geometric conditions that lead to singularity. Unlike serial robots, where it is easy to relate Plücker line coordinates to physical locations fixed in each link-attached frame, such geometric understanding is hard to visualize for continuum robots. In this paper, we explore the conditions for the singularity of continuum robots comprised of two and three segments. We derive the conditions for singularity and visualize these singular configurations with their corresponding conditions of singularity. We start the analysis assuming circular curvature, and then we discuss how the same analysis can be extended to non-circular curvature cases. We also define safety regions for singularity that depend on an assumed modal shape variation due to the elastic deflections of these robots. These safety zones can be used to produce designs and path plans that guarantee singularity-free performance despite norm-bounded deflections in configuration space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use \(^{a}\mathbf {x}\) to designate the representation of vector \(\mathbf {x}\) in a frame {A} with axes \(\hat{\mathbf {x}}_a\), \(\hat{\mathbf {y}}_a\), \(\hat{\mathbf {z}}_a\).
References
Bottema, O., Roth, B.: Theoretical Kinematics, vol. 24. Courier Corporation, North Chelmsford (1990)
Briot, S., Goldsztejn, A.: Singularity conditions for continuum parallel robots. IEEE Trans. Robot. 38, 1–19 (2021). https://doi.org/10.1109/TRO.2021.3076830
Chirikjian, G., Burdick, J.: A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 10(3), 343–354 (1994). https://doi.org/10.1109/70.294209
Gilbert, H.B., Hendrick, R.J., Webster, R.J., III.: Elastic stability of concentric tube robots: a stability measure and design test. IEEE Trans. Robot. 32(1), 20–35 (2016). https://doi.org/10.1109/TRO.2015.2500422
Gravagne, I., Walker, I.: Manipulability and force ellipsoids for continuum robot manipulators. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 1, pp. 304–311 (2001). https://doi.org/10.1109/IROS.2001.973375
Jones, B.A., Walker, I.D.: Limiting-case analysis of continuum trunk kinematics. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1363–1368 (2007). https://doi.org/10.1109/ROBOT.2007.363174
Mayer, A., Sawodny, O.: Singularity and workspace analysis for modular continuum robots. In: 2018 IEEE Conference on Control Technology and Applications (CCTA), pp. 280–285 (2018). https://doi.org/10.1109/CCTA.2018.8511408
Merlet, J.P.: Singular configurations of parallel manipulators and Grassmann geometry. Int. J. Robot. Res. 8(5), 45–56 (1989)
Mochiyama, H., Kobayashi, H.: The shape Jacobian of a manipulator with hyper degrees of freedom. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 4, pp. 2837–2842 (1999). https://doi.org/10.1109/ROBOT.1999.774027
Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Measure. Control 108(3), 163–171 (1986). https://doi.org/10.1115/1.3143764
Sarli, N., Giudice, G.D., De, S., Dietrich, M.S., Herrell, S.D., Simaan, N.: TURBot: a system for robot-assisted transurethral bladder tumor resection. IEEE/ASME Trans. Mechatron. 24(4), 1452–1463 (2019). https://doi.org/10.1109/TMECH.2019.2918137
Simaan, N., Shoham, M.: Singularity analysis of a class of composite serial in-parallel robots. IEEE Trans. Robot. Autom. 17(3), 301–311 (2001). https://doi.org/10.1109/70.938387
Simaan, N., Taylor, R., Flint, P.: A dexterous system for laryngeal surgery. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2004, vol. 1, pp. 351–357 (2004). https://doi.org/10.1109/ROBOT.2004.1307175
Wang, L., Simaan, N.: Investigation of Error Propagation in Multi-backbone Continuum Robots. In: Lenarčič, J., Khatib, O. (eds.) Advances in Robot Kinematics, pp. 385–394. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06698-1_40
Wang, L., Simaan, N.: Geometric calibration of continuum robots: joint space and equilibrium shape deviations. IEEE Trans. Robot. 35(2), 387–402 (2019). https://doi.org/10.1109/TRO.2018.2881049
Xu, K., Simaan, N.: Analytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integrals. J. Mech. Robot. 2(1), 011006 (2009). https://doi.org/10.1115/1.4000519
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shihora, N., Simaan, N. (2022). Geometric Insights into Kinematically-Singular Configurations of Planar Continuum Robots. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-08140-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08139-2
Online ISBN: 978-3-031-08140-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)