Abstract
The topic mobility of mechanisms has been studied for more than 150 years and there is still space to enhance its understanding. Davies’ Method integrates graph and screw theory to generate matrices that represent the mechanism statics and/or kinematics. These tools help create new definitions. This paper brings a literature review highlighting the relevance of the subject with respect to mechanism science. Davies’ Method is presented to set the basic knowledge for the developments proposed by this paper, focusing on the structures that define the kinematics of mechanisms and providing an alternative view for the mobility topic. Thus, it is possible to define, in a proper form, distinct types of mobility: Actuated, Passive, and Adjustment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this paper, mobility and degree-of-freedom are used as synonyms and all the developments are valid for parallel mechanisms.
- 2.
Subscripts r, s, t denote rotations around x, y, z axes and u, v, w denote translations along x, y, z axes, respectively [27].
- 3.
IFTOMM stands for International Federation for the Promotion of Mechanism and Machine Science.
References
Chebychev, P.A.: Théorie des mécanismes connus sous le nom de parallélogrammes, 2ème partie. In: Mémoires présentésa l’Académie impériale des sciences de Saint-Pétersbourg par divers savants (1869)
Grúbler, M.: Allgemeine Eigenschaften der zwangsläufigen ebenen kinematischen Ketten. Der Civilingenieur, Leipzig (1883)
Kutzbach, K.: Mechanische leitungsverzweigung, ihre gesetze und anwendungen. Maschinenbau 8(21), 710–716 (1929)
Malishev, A.P.: Analysis and synthesis of mechanisms with a viewpoint of their structure. Izvestiya Tomskogo Technological Institute (1923). (in Russian)
Davies, T.H.: Mechanical networks - II: formulae for degrees of mobility and redundancy. Mech. Mach. Theory 18, 95–101 (1983). https://doi.org/10.1016/0094-114X(83)90101-5
Gogu, G.: Mobility of mechanisms: a critical review. Mech. Mach. Theory 40, 1068–1097 (2005). https://doi.org/10.1016/j.mechmachtheory.2004.12.014
Zhao, J.S., Zhou, K., Feng, Z.J.: Theory of degrees of freedom for mechanisms. Mech. Mach. Theory 39(6), 621–643 (2004). https://doi.org/10.1016/j.mechmachtheory.2003.12.005
Guest, S.D., Fowler, P.W.: A symmetry-extended mobility rule. Mech. Mach. Theory 40(9), 1002–1014 (2005). https://doi.org/10.1016/j.mechmachtheory.2004.12.017
Yang, D.C., Xiong, J., Yang, X.D.: A simple method to calculate mobility with Jacobian. Mech. Mach. Theory 43(9), 1175–1185 (2008). https://doi.org/10.1016/j.mechmachtheory.2007.08.001
Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011). https://doi.org/10.1016/j.mechmachtheory.2011.04.011
Chen, C.: The order of local mobility of mechanisms. Mech. Mach. Theory 46(9), 1251–1264 (2011). https://doi.org/10.1016/j.mechmachtheory.2011.04.007
Muller, A., Shai, O.: Constraint graphs for combinatorial mobility determination. Mech. Mach. Theory 108, 260–275 (2017). https://doi.org/10.1016/j.mechmachtheory.2016.10.012
Huo, X., Sun, T., Song, Y.: A geometric algebra approach to determine motion/constraint, mobility and singularity of parallel mechanism. Mech. Mach. Theory 116, 273–293 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.06.005
Li, C., et al.: Cell division method for mobility analysis of multi-loop mechanisms. Mech. Mach. Theory 141, 67–94 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.07.002
Zhu, X., Shen, H., Wu, C., Chablat, D., Yang, T.: Computer-aided mobility analysis of parallel mechanisms. Mech. Mach. Theory 148, 103810 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103810
Liu, R., Serré, P., Rameau, J.F.: A tool to check mobility under parameter variations in over-constrained mechanisms. Mech. Mach. Theory 69, 44–61 (2013). https://doi.org/10.1016/j.mechmachtheory.2013.05.005
Rameau, J.F., Serré, P.: Computing mobility condition using Groebner basis. Mech. Mach. Theory 91, 31–38 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.04.003
Bartkowiak, R., Woernle, C.: Necessary and sufficient mobility conditions for single-loop overconstrained nH mechanisms. Mech. Mach. Theory 103, 65–84 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.03.023
Chen, Y., Feng, J., Liu, Y.: A group-theoretic approach to the mobility and kinematic of symmetric over-constrained structures. Mech. Mach. Theory 105, 91–107 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.06.004
Chen, Y., Feng, J.: Mobility of symmetric deployable structures subjected to external loads. Mech. Mach. Theory 93, 98–111 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.07.007
Hao, G., Kong, X.: A normalization-based approach to the mobility analysis of spatial compliant multi-beam modules. Mech. Mach. Theory 59, 1–19 (2013). https://doi.org/10.1016/j.mechmachtheory.2012.08.013
Wang, J., Ting, K.L., Xue, C.: Discriminant method for the mobility identification of single degree-of-freedom double-loop linkages. Mech. Mach. Theory 45, 740–755 (2010). https://doi.org/10.1016/j.mechmachtheory.2009.12.004
Davies, T.H.: Kirchhoff’s circulation law applied to multi-loop kinematic chains. Mech. Mach. Theory 16, 171–183 (1981). https://doi.org/10.1016/0094-114X(81)90033-1
Mejia, L., Simas, H., Martins, D.: Force capability in general 3 DoF planar mechanisms. Mech. Mach. Theory 91, 120–134 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.04.013
Mejia, L., Simas, H., Martins, D.: Wrench capability in redundant planar parallel manipulators with net degree of constraint equal to four, five or six. Mech. Mach. Theory 105, 58–79 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.06.020
Laus, L.P., Simas, H., Martins, D.: Machine efficiency determined using graph and screw theories with application in robotics. Mech. Mach. Theory 148, 103748 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103748
Hunt, K.H.: Kinematic Geometry of Mechanisms. The Oxford Engineering Science Series, vol. 7. Clarendon, Oxford (1978)
Murota, K.: Matrices and Matroids for System Analysis. Algorithms and Combinatorics Series. Springer, Heidelberg (2009)
Ionescu, T.G., Antonescu, P., Biro, I., Bögelsack, G., Klein Breteler, A.J.: Terminology for the mechanism and machine science, Chapter 0-13. Mech. Mach. Theory 38, 767-901 (2003)
Hwan, K.K.: Korean patent: tie rod assembly of steering apparatus for vehicle (2012). https://patents.google.com/patent/KR20140037352A/en
Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hoeltgebaum, T., Meneghini, L., Artmann, V.N., Martins, D. (2022). Classification of Mobilities - New Insights on an Old Topic. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-08140-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08139-2
Online ISBN: 978-3-031-08140-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)