Skip to main content

Classification of Mobilities - New Insights on an Old Topic

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2022 (ARK 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 24))

Included in the following conference series:

  • 1148 Accesses

Abstract

The topic mobility of mechanisms has been studied for more than 150 years and there is still space to enhance its understanding. Davies’ Method integrates graph and screw theory to generate matrices that represent the mechanism statics and/or kinematics. These tools help create new definitions. This paper brings a literature review highlighting the relevance of the subject with respect to mechanism science. Davies’ Method is presented to set the basic knowledge for the developments proposed by this paper, focusing on the structures that define the kinematics of mechanisms and providing an alternative view for the mobility topic. Thus, it is possible to define, in a proper form, distinct types of mobility: Actuated, Passive, and Adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, mobility and degree-of-freedom are used as synonyms and all the developments are valid for parallel mechanisms.

  2. 2.

    Subscripts r, s, t denote rotations around x, y, z axes and u, v, w denote translations along x, y, z axes, respectively [27].

  3. 3.

    IFTOMM stands for International Federation for the Promotion of Mechanism and Machine Science.

References

  1. Chebychev, P.A.: Théorie des mécanismes connus sous le nom de parallélogrammes, 2ème partie. In: Mémoires présentésa l’Académie impériale des sciences de Saint-Pétersbourg par divers savants (1869)

    Google Scholar 

  2. Grúbler, M.: Allgemeine Eigenschaften der zwangsläufigen ebenen kinematischen Ketten. Der Civilingenieur, Leipzig (1883)

    MATH  Google Scholar 

  3. Kutzbach, K.: Mechanische leitungsverzweigung, ihre gesetze und anwendungen. Maschinenbau 8(21), 710–716 (1929)

    Google Scholar 

  4. Malishev, A.P.: Analysis and synthesis of mechanisms with a viewpoint of their structure. Izvestiya Tomskogo Technological Institute (1923). (in Russian)

    Google Scholar 

  5. Davies, T.H.: Mechanical networks - II: formulae for degrees of mobility and redundancy. Mech. Mach. Theory 18, 95–101 (1983). https://doi.org/10.1016/0094-114X(83)90101-5

    Article  Google Scholar 

  6. Gogu, G.: Mobility of mechanisms: a critical review. Mech. Mach. Theory 40, 1068–1097 (2005). https://doi.org/10.1016/j.mechmachtheory.2004.12.014

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhao, J.S., Zhou, K., Feng, Z.J.: Theory of degrees of freedom for mechanisms. Mech. Mach. Theory 39(6), 621–643 (2004). https://doi.org/10.1016/j.mechmachtheory.2003.12.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Guest, S.D., Fowler, P.W.: A symmetry-extended mobility rule. Mech. Mach. Theory 40(9), 1002–1014 (2005). https://doi.org/10.1016/j.mechmachtheory.2004.12.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, D.C., Xiong, J., Yang, X.D.: A simple method to calculate mobility with Jacobian. Mech. Mach. Theory 43(9), 1175–1185 (2008). https://doi.org/10.1016/j.mechmachtheory.2007.08.001

    Article  MATH  Google Scholar 

  10. Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011). https://doi.org/10.1016/j.mechmachtheory.2011.04.011

    Article  MATH  Google Scholar 

  11. Chen, C.: The order of local mobility of mechanisms. Mech. Mach. Theory 46(9), 1251–1264 (2011). https://doi.org/10.1016/j.mechmachtheory.2011.04.007

    Article  MATH  Google Scholar 

  12. Muller, A., Shai, O.: Constraint graphs for combinatorial mobility determination. Mech. Mach. Theory 108, 260–275 (2017). https://doi.org/10.1016/j.mechmachtheory.2016.10.012

    Article  Google Scholar 

  13. Huo, X., Sun, T., Song, Y.: A geometric algebra approach to determine motion/constraint, mobility and singularity of parallel mechanism. Mech. Mach. Theory 116, 273–293 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.06.005

    Article  Google Scholar 

  14. Li, C., et al.: Cell division method for mobility analysis of multi-loop mechanisms. Mech. Mach. Theory 141, 67–94 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.07.002

    Article  Google Scholar 

  15. Zhu, X., Shen, H., Wu, C., Chablat, D., Yang, T.: Computer-aided mobility analysis of parallel mechanisms. Mech. Mach. Theory 148, 103810 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103810

    Article  Google Scholar 

  16. Liu, R., Serré, P., Rameau, J.F.: A tool to check mobility under parameter variations in over-constrained mechanisms. Mech. Mach. Theory 69, 44–61 (2013). https://doi.org/10.1016/j.mechmachtheory.2013.05.005

    Article  Google Scholar 

  17. Rameau, J.F., Serré, P.: Computing mobility condition using Groebner basis. Mech. Mach. Theory 91, 31–38 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.04.003

    Article  Google Scholar 

  18. Bartkowiak, R., Woernle, C.: Necessary and sufficient mobility conditions for single-loop overconstrained nH mechanisms. Mech. Mach. Theory 103, 65–84 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.03.023

    Article  Google Scholar 

  19. Chen, Y., Feng, J., Liu, Y.: A group-theoretic approach to the mobility and kinematic of symmetric over-constrained structures. Mech. Mach. Theory 105, 91–107 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.06.004

    Article  Google Scholar 

  20. Chen, Y., Feng, J.: Mobility of symmetric deployable structures subjected to external loads. Mech. Mach. Theory 93, 98–111 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.07.007

    Article  Google Scholar 

  21. Hao, G., Kong, X.: A normalization-based approach to the mobility analysis of spatial compliant multi-beam modules. Mech. Mach. Theory 59, 1–19 (2013). https://doi.org/10.1016/j.mechmachtheory.2012.08.013

    Article  Google Scholar 

  22. Wang, J., Ting, K.L., Xue, C.: Discriminant method for the mobility identification of single degree-of-freedom double-loop linkages. Mech. Mach. Theory 45, 740–755 (2010). https://doi.org/10.1016/j.mechmachtheory.2009.12.004

    Article  MATH  Google Scholar 

  23. Davies, T.H.: Kirchhoff’s circulation law applied to multi-loop kinematic chains. Mech. Mach. Theory 16, 171–183 (1981). https://doi.org/10.1016/0094-114X(81)90033-1

    Article  Google Scholar 

  24. Mejia, L., Simas, H., Martins, D.: Force capability in general 3 DoF planar mechanisms. Mech. Mach. Theory 91, 120–134 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.04.013

    Article  Google Scholar 

  25. Mejia, L., Simas, H., Martins, D.: Wrench capability in redundant planar parallel manipulators with net degree of constraint equal to four, five or six. Mech. Mach. Theory 105, 58–79 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.06.020

    Article  Google Scholar 

  26. Laus, L.P., Simas, H., Martins, D.: Machine efficiency determined using graph and screw theories with application in robotics. Mech. Mach. Theory 148, 103748 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103748

    Article  Google Scholar 

  27. Hunt, K.H.: Kinematic Geometry of Mechanisms. The Oxford Engineering Science Series, vol. 7. Clarendon, Oxford (1978)

    Google Scholar 

  28. Murota, K.: Matrices and Matroids for System Analysis. Algorithms and Combinatorics Series. Springer, Heidelberg (2009)

    Google Scholar 

  29. Ionescu, T.G., Antonescu, P., Biro, I., Bögelsack, G., Klein Breteler, A.J.: Terminology for the mechanism and machine science, Chapter 0-13. Mech. Mach. Theory 38, 767-901 (2003)

    Google Scholar 

  30. Hwan, K.K.: Korean patent: tie rod assembly of steering apparatus for vehicle (2012). https://patents.google.com/patent/KR20140037352A/en

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Hoeltgebaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoeltgebaum, T., Meneghini, L., Artmann, V.N., Martins, D. (2022). Classification of Mobilities - New Insights on an Old Topic. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_32

Download citation

Publish with us

Policies and ethics