Abstract
Due to high dimensions and nonlinear behavior, the characterization of the entire workspace of a spatial robotic system represents an ambitious computation task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
von Mises, R.: Motorrechnung, ein neues Hilfsmittel der Mechanik. Z. Angew. Math. Mech. 4, 2 (1924)
Brand, L.: Vector and Tensor Analysis. Wiley (1947)
Woo, L., Freudenstein, F.: Application of Line geometry to theoretical kinematics and the kinematic analysis of mechanical systems. J. Mech. 5, 3 (1970)
Veldkamp, G.R.: On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics. Mech. Mach. Theory 11, 2 (1976)
Sugimoto, K., Duffy, J.: Application of linear algebra to screw systems. Mech. Mach. Theory 17, 1 (1982)
Selig, J.M.: A note on the principle of transference. In: 19th Mechanisms Conference (ASME) (1986)
Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press (1994)
Staffetti, E., Bruyninckx, H., De Schutter, J.: On the invariance of manipulability indices. In: Advances in Robot Kinematics. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0657-5_7
Davidson, J.K., Hunt, K.H.: Robots and Screw Theory: Applications of Kinematics and Statics to Robotics. Oxford University Press (2004)
Donelan, P.S.: Singularity-theoretic methods in robot kinematics. Robotica 25, 06 (2007)
Pennestrì, E., Stefanelli, R.: Linear algebra and numerical algorithms using dual numbers. Multibody Syst. Dyn. 18 (2007)
McCarthy, J.M., Soh, G.S.: Geometric Design of Linkages. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-7892-9
Bongardt, B.: Geometric Characterization of the Workspace of Non-orthogonal Rotation Axes. J. Geomet. Mech. (2014)
Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44342-2
Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press (2017)
Bongardt, B.: The adjoint trigonometric representation of displacements and a closed- form solution to the IKP of general 3C chains. J. Appl. Math. Mech. 100, 6 (2020)
Dai, J.S., Sun, J.: Geometrical revelation of correlated characteristics of the ray and axis order of the Plücker coordinates in line geometry. Mech. Mach. Theory 153 (2020)
Bongardt, B., Müller, A.: On orientation, position, and attitude singularities of general 3R chains. Math. Robot. (2022)
Acknowledgements
The second author acknowledges that this work has been supported by the “LCM-K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bongardt, B., Müller, A. (2022). On the Use of Ternary Products to Characterize the Dexterity of Spatial Kinematic Chains. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-08140-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08139-2
Online ISBN: 978-3-031-08140-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)