Downloaded from orbit.dtu.dk on: Apr 27, 2024

DTU Library

=
=
—

i

PERMANENT: Publicly Verifiable Remote Attestation for Internet of Things through
Blockchain

Ankergard, Sigurd Frej Joel Jargensen; Dushku, Edlira; Dragoni, Nicola

Published in: th
Proceedings of 14 International Symposium on Foundations & Practice of Security

Link to article, DOI:
10.1007/978-3-031-08147-7_15

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Ankergard, S. F. J. J., Dushku, E., & Dragoni, N. (2022). PERMANENT: Publicly Verifiable Remote Attestation
for Internet of Things through Blockchain. In Proceedings of 14" International Symposium on Foundations &
Practice of Security (pp. 218-234). Springer. https://doi.org/10.1007/978-3-031-08147-7_15

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1007/978-3-031-08147-7_15
https://orbit.dtu.dk/en/publications/84418c00-8fd8-443a-851f-324bb0b2466c
https://doi.org/10.1007/978-3-031-08147-7_15

PERMANENT: Publicly Verifiable Remote
Attestation for Internet of Things through
Blockchain

Sigurd Frej Joel Jorgensen Ankergard, Edlira Dushku & [0000-0002-4974-9739]
and Nicola Dragoni[0000~0001-9575—2990]

DTU Compute, Technical University of Denmark (DTU), Kgs. Lyngby 2800,
Denmark
s1644430student.dtu.dk, {edldu,ndra}@dtu.dk

Abstract. Remote Attestation (RA) is a security mechanism that al-
lows a centralized trusted entity (Verifier) to check the trustworthiness
of a potentially compromised IoT device (Prover). With the tsunami of
interconnected IoT devices, the advancement of swarm RA schemes that
efficiently attest large IoT networks has become crucial. Recent swarm
RA approaches work towards distributing the attestation verification
from a centralized Verifier to many Verifiers. However, the assumption
of trusted Verifiers in the swarm is not practical in large networks. In
addition, the state-of-the-art RA schemes do not establish network-wide
decentralized trust among the interacting devices in the swarm. This pa-
per proposes PERMANENT, a Publicly Verifiable Remote Attestation
protocol for Internet of Things through Blockchain, which stores the his-
torical attestation results of all devices in a blockchain and allows each
interacting device to obtain the attestation result. PERMANENT en-
ables devices to make a trust decision based on the historical attestation
results. This feature allows the interaction among trustworthy devices (or
with a trust score over a certain threshold) without the computational
overhead of attesting every participating device before each interaction.
We validate PERMANENT with a proof-of-concept implementation, us-
ing Hyperledger Sawtooth as the underlying blockchain. The conducted
experiments confirm the feasibility of the PERMANENT protocol.

Keywords: Remote attestation; Internet of Things; Blockchain; Public
verifiability

1 Introduction

With the rapid evolution of the Internet-of-Things (IoT), many smart devices
are increasingly becoming interconnected, working together in remote locations
and performing many collaborative tasks without human intervention. Often IoT
devices perform safety-critical operations and process sensitive information, thus,
these devices are continuously targeted from many cyber attacks [25,30,17,19].
While it is challenging to protect resource-constrained devices with conventional

2 Ankergard et al.

security mechanisms, Remote Attestation (RA) has emerged as a lightweight
security method that verifies whether devices have been compromised or not.
Traditional RA is a challenge-response protocol between a trusted party called
Verifier (Vrf) and an untrusted remote device called Prover (Prv). Specifically,
at the attestation time, the Vrf sends a challenge to the Prv, the Prv responds
by sending reliable evidence about its software state to the Vrf. This evidence
consists of performing a software measurement (i.e., computing a checksum or
hash) usually over the static memory content of a device which allows the Vrf to
detect the malware presence on Prv’s device. However, traditional challenge-
response RA protocols pose scalability challenges for large IoT systems [3].

In order to overcome the scalability challenges of RA, many swarm RA
schemes ([8], [5], [4], to mention only a few) have been proposed in the literature
to allow a trusted Vrf to attest large-scale IoT networks. The state-of-the-art
RA approaches typically rely on the presence of multiple Verifiers in the swarm
for verification. Nevertheless, the assumption of trusted Verifiers is often not
practical in large networks. Moreover, the existing RA schemes do not establish
network-wide decentralized trust among the interacting devices in the swarm.

Contribution of the Paper. We argue that, to establish trust in multi-
party large IoT networks, blockchain is a promising technology [14]. In particular,
the immutability of blockchain guarantees the reliability of IoT data stored in
blockchain transactions. Moreover, all the historical transactions stored in the
blockchain are traceable. While these properties are important in improving
IoT data security in general, they can potentially play a key role in securing
attestation evidence of IoT devices.

To the best of our knowledge, this paper proposes the first RA protocol
that uses blockchain technology to make RA publicly verifiable. Specifically,
instead of relying on any single trusted third party, we rely on permissioned
blockchains [18] to establish trust in a decentralized manner. In our approach,
devices perform self-attestation [22], [11], [27] which gets triggered by a timer
stored in the device’s trusted component. Then, we leverage the timer of Proof-
of-Elapsed-Time (PoET) consensus mechanism to combine it with the device’s
timer used for self-attestation in order to reach consensus without additional
interactions. The proposed protocol utilizes the blockchain-based history of the
devices attestation to evaluate the trustworthiness of IoT devices. The paper
brings the following two main contributions:

1. The paper designs PERMANENT, a novel RA protocol which leverages
blockchain technology to make the attestation result publicly verifiable and
decentralized. PERMANENT decides devices’ trustworthiness based on their
entire historical attestations evidence. This feature serves as a building block
to enable secure interactions among IoT devices.

2. The paper presents the proof-of-concept implementation of PERMANENT.
PERMANENT has been implemented and tested with HyperLedger Saw-
tooth using Proof-of-Elapsed-Time (PoET) as a consensus mechanism. Ex-
periments confirm the feasibility of the proposed solution.

PERMANENT 3

Outline. The remainder of this paper is organized as follows. Section 2
presents different RA approaches and compares PERMANENT with relevant
ones. System model and adversary model are described in Section 3 and Section
4, respectively. Next, PERMANENT protocol is detailed in Section 5 and its
proof-of-concept implementation presented in Section 6. Protocol limitations are
discussed in Section 7. Finally, Section 8 concludes the paper.

2 Related works

In general RA is classified into three categories: software-based, hardware-based
and hybrid RA. Software RA [29], [6] does not require specialized hardware com-
ponents but instead uses timing requirements to ensure the attestation code has
not been tampered with. However, software-based RA schemes rely on strong
adversarial assumptions and do not provide secure storage for protecting device’s
keys and the attestation code. To tackle this drawback, hardware-based RA relies
on specialized hardware components like Trusted Platform Module (TPM) [7]
to provide a root-of-trust. TPM consists of a coprocessor that performs software
measurements during system boot and securely stores RA cryptographic keys.
However, such a specialized hardware component for RA is expensive and not
practical for IoT devices. Hybrid RA [16], [10] relies only on minimal additional
hardware components, such as Read-Only Memory (ROM) and memory protec-
tion unit (MPU). The hardware components of hybrid approaches are cheaper,
making them more suitable for an IoT setting. Thus, the current state-of-the-art
RA protocols are based on hybrid architecture.

Self-triggering RA. Instead of following a classical on-demand challenge-
response protocol, self-attestation schemes self-trigger the attestation based on a
timer resided in a trusted component. SEED [22] is a non-interactive RA proto-
col where the RA time is determined from a pseudo-random number generator
(PRNG), for which both the Prv and the Vrf have the seed. Once the timer
is triggered, the Prv performs RA. Then, the Prv uses the shared symmetric
key to sign the RA result along with the RA time so that the Vrf can check the
Prv’s trustworthiness and RA freshness. ERASMUS [11] is a RA protocol that
aims to solve the problem of on-demand RA requiring a device to stop normal
operations to perform RA. In ERASMUS, the Prv uses a reliable read-only clock
to perform RA at pre-defined times. The Prv then stores the RA results locally
in its memory, and the Vrf can collect a set of consecutive RA results. In this
way, the Vrf can identify a mobile adversary that tries to hide itself during RA.

Swarm RA. Swarm RA schemes (e.g., [8], [5], [4], [3]) focus on attesting a
group of devices efficiently. SEDA [8] constructs the network as a spanning tree
to allow efficient propagation of RA request and aggregation of the RA responses.
The aggregated RA result is then sent to a centralized trusted Vrf. SANA [5]
extends SEDA by employing a multi-signature scheme that aggregates the RA
results among a large group of devices. The usage of multi-signature makes the
RA publicly verifiable in SANA because anyone who knows that public key can

4 Ankergard et al.
Table 1. Remote Attestation schemes using Blockchain

RA scheme Public/Private Consensus Blockchain RA Decentralized

BARRET Public PoW Ethereum Any No
TM-COIN Public PoW Own Hardware No
HyperLedger
DAN Private PBFT Fabric Hardware No
HyperLedger
PERMANENT Private PoET Sawtooth Hybrid Yes

verify the aggregated RA result. In general, swarm RA schemes are on-demand
protocols initiated by a trusted Vrf.

Distributed RA. Distributed services RA schemes (e.g., [12], [13], [15]) aim
to attest a group of interacting devices that compose a distributed IoT service.
RADIS [13] performs control-flow RA of synchronous distributed services by
representing the entire control-flow execution of a distributed service as a sin-
gle hash value. SARA [15] attests asynchronous distributed IoT services in a
publish/subscribe IoT network. Both RADIS and SARA attest distributed ser-
vices while relying on the presence of a centralized trusted Vrf. Instead, the
distributed RA schemes (e.g., [2], [21], [24]) overcome the need for a centralized
trusted Vrf, e.g., a base station, to handle RA. In particular, devices in the
network play the role of the Prv and the Vrf. As such, devices in the network
attest each other. DIAT [2] performs control-flow RA for each pair of devices. In
US-AID [21], devices perform mutual attestations and store the result of their
neighbour to assess the health status of the entire network. In ESDRA [24],
each Prv gets attested by three different neighbours that assign a score to the
Prv. In the end, the Prv’s score is reported to cluster-heads and then to the Vrf.
In distributed RA schemes, the verification process is distributed across many
Verifiers, but the RA results are not publicly verifiable.

2.1 Remote attestation using Blockchain

BARRET [9] aims to mitigate computational Denial of Service attacks by uti-
lizing an Ethereum blockchain. It works by forcing the Vrf to pay a computa-
tional fee to send a RA request, which is the fee for mining a blockchain block.
Since Verifiers have to pay this fee, they cannot send thousands of (valid) RA
requests to a Prv. In BARRET, a Vrf sends a RA request to the blockchain, and
the blockchain smart contract forwards this RA request to the Prv. Once the
Pruv receives the request, it performs RA, submits the result to the blockchain,
and sends it to the Vrf. Then, the Vrf checks and submits the verification
result to the blockchain. TM-COIN [26] is a hardware-based RA scheme uti-
lizing blockchain to store the RA results. Here, a Vrf challenges a Prv, and the
Prv stores the evidence in the blockchain. At any time, the Vrf can check the
blockchain to see if a Prv is trustworthy. TM-COIN uses its own blockchain ar-
chitecture, a public blockchain with Proof-of-Work (PoW) consensus algorithm.
However, it is not a completely decentralized system since the miners are still

PERMANENT 5

Table 2. Overview of Consensus Algorithms efficiency

Algorithm Family Throughput Scalability = Overhead

Proof-of-Work (PoW) Proof-of-X Low Low Computational
Proof-of-Authority (PoA) Proof-of-X Low High None
Proof-of-Stake (PoS) Proof-of-X Low Low None
Proof-of-Elapsed-Time (PoET) Proof-of-X Low High None
Proof-of-Capacity (PoC) Proof-of-X Low Low None
Proof-of-Burn (PoB) Proof-of-X Low Low None
Proof-of-Importance (Pol) Proof-of-X Low Low None

Byzantine Fault Tolerance (BFT) Voting High Low Communications

Crash Fault Tolerance (CFT) Voting High High Communications

responsible for performing the PoW and verifying the RA response. DAN [23] is
a hardware-based RA scheme that uses a Trusted Platform Module (TPM) as a
root-of-trust. It clusters devices into organizations where each organization has
a number of peer nodes responsible for interactions with the blockchain. Here, a
Vrf sends a challenge to the device and waits for the RA result. The peer node is
responsible for adding the result to the blockchain. In DAN, the proof-of-concept
implementation relies on HyperLedger Fabric and the peer nodes are containers
running on consumer desktops.

Discussion. Table 1 shows an overview of the three RA schemes utilizing
blockchain technology. It shows that two of them, BARRET and TM-COIN, use
public blockchains with PoW consensus algorithm. In contrast, DAN uses a pri-
vate blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus.
Furthermore, TM-COIN and DAN rely on specialized hardware components,
while BARRET abstracts away from the RA and hardware requirements. All
three schemes rely on trusted Verifiers to verify RA response and/or super nodes
to handle blockchain interactions. Thus, they are not completely decentralized.
Different from the existing blockchain-based RA schemes, PERMANENT aims
to provide a decentralized RA using a Hyperledger Sawtooth as a permissioned
blockchain with Proof-of-Elapsed-Time (PoET) as a consensus mechanism.

2.2 Blockchain Consensus Protocols

In designing a blockchain network, the choice of the consensus protocol is crucial
mainly due to its significant impact on performance. Table 2 presents an overview
of the consensus algorithms efficiency. While voting-based consensus protocols
provide a better performance, they introduce a communications overhead, which
is costly in an IoT environment. The PoX category has two protocols, PoOET and
PoA, which both have high scalability, but they have a low throughput (Transac-
tions per second), which makes them poor choices if there are many transactions
to be added to the blockchain. However, in the RA context, the throughput is
a low priority metric because RA does not occur very often. To this end, PoET

6 Ankergard et al.

is a suitable consensus protocol with good performance, offering both low com-
putational and low communications overhead. In PoET consensus, each network
participant is given a random timer and the participant that has the shortest
time (the timer that expires first) becomes the block leader and produces the
new block. Thus, PoET brings an advantage in our proposed RA protocol: We
leverage PoET’s timer to combine it with the Pro’s timer (protected by the
trusted component) used for self-attestation. In this way, when the timer trig-
gers RA| it also allows the device to add a new block in the blockchain with
the corresponding RA result. Additionally, in comparing different blockchains
architectures, the study in [28] shows that HyperLedger Sawtooth clearly out-
performs other HyperLedger blockchains in an IoT setting. Thus, in this paper,
we choose HyperLedger Sawtooth with PoET consensus algorithm.

3 System model

We consider a peer-to-peer (P2P) IoT network where untrusted IoT devices
interact among themselves. In such a system, each device must be authenticated
in order to join the permissioned blockchain network that uses Proof-of-Elapsed-
Time (PoET) consensus mechanism. Devices that are part of the network have
permission to add blocks in the blockchain. Unauthenticated entities have only
read permissions to the blockchain data. Each participating IoT device acts
both as a Prover (Prv) and Verifier (Vrf). Note that we assume that devices are
trusted in the beginning when they authenticate to join the blockchain network
(e.g., they can be enforced to perform attestation), but they can be compromised
later, so in general we consider a network of untrusted devices.

We assume the presence of a Network Operator (OP) that guarantees the se-
cure bootstrap of RA protocol and blockchain code deployed on each device. OP
computes the checksum (i.e., collision-resistant hash) of the device’s legitimate
software and stores the corresponding valid measurement inside each device. In
addition, the OP ensures secure key distribution among devices.

Q Self-attestation e Verify the block
Check attestation

9 Create a new block history of Device 1

o |

o > :
— S Propagate the block !
1 Time trigger o E

' " Start interaction

Fig. 1. Overview of interactions between two devices in the blockchain network

We consider the interactions among untrusted devices in a P2P blockchain
network, and for simplicity, Figure 1 depicts the interactions among two devices
in the network. The RA procedure starts when the timer of Device 1 gets trig-

PERMANENT 7

gered (Step @). Then, Device 1 performs self-attestation by computing the soft-
ware measurement and comparing the computed result against the pre-stored
legitimate attestation value (1 if it matches and 0 otherwise) (Step @), and
adds the boolean attestation result in a new blockchain block (Step @). When
the new block is published to the blockchain, it is broadcasted and propagated
throughout the network (Step @). When the peers (e.g., Device 2 in Figure 1)
receive the new block, they verify it by checking the device’s signature and the
signed timer (Step @). Later, when Device 2 wants to communicate to another
device in the network (e.g., Device 1), it first checks the blockchain for the his-
torical results of the device’s attestation and then decides its trustworthiness
(Step @) If the device is trustworthy above a pre-defined threshold, then these
two devices proceed with their interaction (Step @).

4 Adversary model and Security requirements

4.1 Adversary model

In line with the adversary model described in [1], [3], and in particular, with
other swarm and self-attestation schemes (e.g., [22], [11], [8], [5]), we consider
an adversary with the following capabilities.

— Software adversary (Advg,): A Advs, exploits a vulnerability on Prv’s
software and compromises the Prv by executing malicious code.

— Communication adversary (Adveomm): The Adveomm can forge, drop,
delay, and eavesdrop the exchanged messages among devices.

— Mobile adversary (Advmop): A Advpy,ep tries to avoid detection by deleting
itself just before the execution of the attestation protocol starts.

— Replay attack: Any of the adversaries above can precompute a valid at-
testation response and responds with the old valid attestation response to
hide malware presence.

Assumptions. We assume that a Advg, does not compromise the hardware-
protected memory. Following the assumptions of other RA schemes [22], [11], we
rule out physical adversaries. While we do not consider Denial of Service (DoS)
and Distributed Denial of Service (DDoS) attacks, we limit these attacks by
relying on self-attestation approach where the attestation request is not initiated
by the Vrf. In addition, the current scope of the paper does not consider attacks
that directly target the blockchain.

Device requirements. In line with common assumptions of the state-of-
the-art RA schemes (e.g., [22], [15], [20], [20], [31]), we assume the presence of
three trusted components inside a Prv.

— Read-Only Memory (ROM). The code of PERMANENT protocol and
blockchain reside in a ROM memory region, preventing software adversaries
Advg,, from tampering with the code.

8 Ankergard et al.

— Secure key storage. This memory region stores securely the attestation
keys and the timer. It guarantees that device key is accessed only by the
PERMANENT protocol resided in ROM. The timer is the component re-
sponsible for scheduling RA, thus, it must be tamper-proof and unpredictable
by an adversary. To enforce unpredictability, a pseudo-random number gen-
erator (PRNG) is used for the time scheduler. Only PERMANENT protocol
and blockchain code have read permissions in this memory region.

— Real Time Clock (RTC). RTC is a real-time write-protected clock that a
software adversary cannot modify. RTC ensures that an attestation response
is generated at the current time and the adversary is not reusing old software
measurements.

4.2 Security requirements

Considering the adversarial model described in Section 4, we define the required
security properties in a blockchain-based RA protocol as follows.

— Integrity. The protocol should provide reliable evidence guaranteeing that
the attestation response of the Prv corresponds to software measurements of
the Prv at the attestation time (0 when the Prv is malicious, 1 otherwise).

— Integrity of communication data. The protocol should ensure the Prv’s
exchanged data cannot be altered without it being detectable by other de-
vices participating in the network.

— Freshness. The protocol should ensure that the attestation time is random
and confidential. Any given attestation result should be reliably linked to a
new attestation time.

5 PERMANENT: Protocol proposal

This section describes in detail the four distinct phases that compose the pro-
posed PERMANENT protocol: (1) Bootstrap, (2) Attestation, (3) Verification,
and (4) History-based Trust Decision. Table 3 summarizes the terms used in
PERMANENT protocol.

5.1 Bootstrap

The Bootstrap Phase of PERMANENT is an offline procedure executed only
once at the beginning of the system deployment. During this phase, the operator
OP is responsible for securely deploying the devices, distributing and managing
the keys, and installing certificates on the devices. In particular, each device
Prv is initialized with an asymmetric signing key pair (SKpy,, PKp.,) and
an identity certificate cert(PKp,,) signed by OP, guaranteeing that PKp,,
belongs to Prv. This certificate is stored in the genesis block, so it cannot be
altered and is always available for devices to retrieve. Furthermore, each device
is initialized with the Op’s public key PKop to be able to verify cert(PKp;.,)

PERMANENT 9

Table 3. Notation Summary of PERMANENT protocol

Term Description

Vrf Verifier

Prv Prover

opP System Operator

SKpry Secret key of Prover

PKpry Public key of Prover

Block The blockchain block containing
the attestation data

PRNG Pseudo-Random Number Generator

Timer Scheduled time

Seed The seed of PRNG

CreatedOn Timestamp of the blockchain block

v Calculated Trust score

a; The result of the 7’th attestation

n The number of attestation results stored

in the blockchain
cert(PKpry) Identity certificate of Prover
SeedGenerator() A random generator function

of other devices without storing the public key of every participating device.
Furthermore, the OP stores a threshold value inside the device to indicate that
the device can interact only with other network devices with a trust score above
this pre-defined threshold value.

5.2 Attestation

In the following, we describe the attestation of a P2P network with intercon-
nected IoT devices. In such a system, only authenticated device join the per-
missioned blockchain network and add blocks to the blockchain. However, the
blockchain data are publicly readable even from unauthenticated entities. Alter-
natively, we can consider an IoT system with an edge layer consisting of higher-
end edge devices with a larger computational power and storage capacity than
the IoT devices. In that case, only a subset of devices deploys the blockchain. To
preserve the generality of the approach, in this paper we consider a distributed
P2P network where each authenticated device participates in the blockchain.

In PERMANENT, the attestation gets initialized by a timer inside the device.
The timer has two functions, scheduling function and triggering function for the
attestation. The scheduling function uses a pseudo-random number generator
(PRNG) for scheduling the attestation at unpredictable time within a pre-defined
time interval. The seed of the PRNG is generated by a random generator function
SeedGenerator(). We combine the self-attestation procedure and the blockchain
to use the same timer.

In PERMANENT, the device performs self-attestation, which means the at-
testation result is verified by the device itself (secured by a trusted component)

10 Ankergard et al.

and the output of attestation is 0 or 1 (failed or successful attestation). Once
the device completes the attestation, it creates a new blockchain block contain-
ing the necessary information required to verify the result and device identity.
Then, a Merkle Hash Tree is constructed in order to create the header for the
block. After the block has been created, it is propagated throughout the network
using a gossip protocol. When the block is published, the scheduled time and
the seed for the timer is signed and sent along with the block. Based on the
PRNG properties, other devices participating in the blockchain use the seed to
reproduce the scheduled time and verify that the device was actually allowed to
add a new block to the blockchain.

Block design for attestation. The attestation block contains all the data
produced during attestation transactions along with the hash of the previous
block added during block creation as shown in Figure 2. In particular, the at-
testation block contains an identifier (i.e., id or public key) for the device that
submitted the attestation result, the attestation result, the scheduled time, and
the created time. The scheduled time is used during the verification phase to
verify the validity of the attestation and detect replay attacks. The created time
is used later for the history-based trust decision.

Header

Device ID

RA result
ScheduledTime
CreatedOn
Previous hash

Fig. 2. Data structure for attestation block

5.3 Verification

The verification of published blocks is a three-step procedure: certificate ver-
ification, signature verification, and scheduled time verification. In the PoET
consensus protocol, a new block is added only when there is the respective de-
vices turn. Thus, the wait time (i.e., the scheduled time) should be verified before
adding the block to the blockchain in order to prevent participants from adding
a block at arbitrary times. In order to verify the scheduled time, the time and the
seed is signed with the private key of the publishing device, using their private
key. Since the other devices receive the seed when the block is published, they
are able to reproduce and verify the scheduled time. Figure 3 shows the flow of
the block verification. The verification procedure starts with a device receiving
the scheduled time Timer, the seed Seed, both signed with Prv’s secret key
SKpyy, along with the block Block. Upon receiving these data, the device first
verifies the certificate. If the certificate is valid, then it verifies the signature of

PERMANENT 11

Non-valid certificate

Receive new Block > Get and verify certificate
SKpp(Timer, Seed), Block > CERTIFIED
{SKpy(Timer, Seed), Block} INIT cort(PRory) Y g
A
Non-valid on-valid signature VerifySignature(SKp, (Timer, Seed), cert(PKpy,))
Add new block
scheduled time
Y
BLOCK | Verify scheduled time BLOCK
CREATION | (Timer, Seed) VERIFICATION

Fig. 3. State Machine - Block Verification

the scheduled time and seed. Once the signature is verified, the device proceeds
with the verification of the scheduled time against the creation time CreatedOn
of the block to ensure the device was allowed to publish a block at this time. If
any of the checks fail, then the block is rejected and the device returns the Init
state, waiting for the next block to be published.

5.4 History-based Trust Decision

The objective of history-based trust decision is to allow devices to decide whether
or not to collaborate with another device based on the historical records of the
devices attestation stored in the blockchain. The historical records allow the trust
decision beyond the recent attestation result. Furthermore, the timestamped
blocks in the blockchain allow the attestations to be weighed based on their age,
for instance, that older attestations have a lower impact on the trust score.

In PERMANENT, the history-based trust score is a weighted average, where
the weight is calculated based on the age of the attestation. In particular, PER-
MANENT calculates the trust score by taking how long after the genesis block
the attestation result was made and divide it by how much time has actually
passed since the genesis block was created. Moreover, in PERMANENT, suc-
cessful attestations have a value of one, while failed attestations have a value
of minus one. This means that if a device failed an attestation a long time ago,
and after that it has passed successful attestations after that, then the failed at-
testation should not have the same impact as if the device failed more recently.
Note that we assume that after a device has failed the attestation the Network
Operator will bootstrap/update the device. In general, the update process is
considered out of scope of the RA objective. Thus, we do not provide further
process details, but we assume that a recent failed result is a stronger indicator
than an old one.

Equation 1 shows the calculation of the trust score.

b =

Zn (CreatedOm—CreatedOngenesis) % X .

i=1 now—CreatedOn genesis i N 1 iff Attestation passed
;=

n

—1 iff Attestation failed

(1)

12 Ankergard et al.

where @ is the resulting trust score, CreatedOn; is the created on timestamp
of the block for attestation i’th, CreatedOngenesis is the created on timestamp
of the genesis block, now is the timestamp of the current time, «; is the result
of the i’th attestation and n is the number of attestation results stored in the
blockchain. In this equation, « is one if the attestation passed and minus one if
it failed.

Figure 4 shows the evolution of the range of trust scores based on the number
of attestations evenly distributed over its lifetime. The maximum trust score is
shown with green and is the score if all attestations are passed. While all failed
attestations are shown in red. Any mix of passed and failed attestation will be
within the range between the green and the red graphs. Due to the weight, the

|—— All failed

All passed |

Trust Score 0 T T T T T T T T

Nisn ber of Attestations

—054

Fig. 4. Trust Score Range

range of the trust score decreases over time. From Figure 4 it is clear that when
time passes the devices cannot obtain the same score as when they are newly
deployed. This causes some challenges when trying to compare two devices with
different ages, even if both devices have passed all attestations.

To mitigate this and make the comparison more clear, the final trust score
is divided by the maximum trust score the device in question can obtain, as
in Equation 2. In this context, the final trust score shows how close the device
is to its maximum trustworthiness. Thus, when two devices passed all their
attestations, they will have the same final trust score and will be considered
equally trustworthy.

(2)

PERMANENT 13

where ¥ is the final trust score, @ is the trust score calculated in Equation 1,
and @,,,,, is the maximum trust score the device can achieve.

The maximum trust score @,,,, is calculated as in Equation 1, but with «
always equal to one. This means the maximum trust score is determined by the
number of attestations and how long ago they where made. The calculation of
the maximum trust score is done as in Equation 3.

n CreatedOn; —CreatedOngenesis
Zi:l(now—CreatedOngeneZis) (3)

gpmaz =
n

The final trust score can be in the range [—1, 1]. It will be negative if the total
weighed failed attestations have a higher value then the total weighed passed
attestations. This means if a device has a negative final trust score, it is highly
untrustworthy. To be trustworthy, a device should be in the positive range, where
a threshold for needed trustworthiness can be chosen, e.g, a final trust score of
¥ > 0.5. Furthermore, the final trust score allows for comparing devices, such
that ¥; = 0.3 > 0.1 = ¥, means that Device 1 is more trustworthy than Device
2, even though they are both below the threshold.

6 Implementation details and proof of concept

We implemented PERMANENT in Python, using Hyperledger Sawtooth as the
underlying blockchain. Hyperledger Sawtooth is a well supported blockchain
platform, which can use the POET consensus algorithm. Docker has been used to
deploy each component in separate containers, simulating a network of devices.

The system consists of six components, namely, Validator, Rest-API, Trans-
action Processor, Settings Processor, and Consensus Engine. Each of these com-
ponents are deployed in individual Docker containers, while an IoT device can
include each component as depicted in Figure 5. Four of the aforementioned
components (i.e., Validator, Rest API, Settings Processor, and Consensus En-
gine) come with the HyperLedger Sawtooth platform and require no changes,
while two components (i.e., Client and Transaction Processor) are custom and
contain the logic of the application.

6.1 Client

The Client contains the code for interacting with the blockchain. In particular, it
is the entity that creates the attestation result and submits it to the blockchain.
When the Client starts, it first sets up event subscriptions to listen and receive
events from the Validator. After the subscriptions, the Client runs an initial at-
testation. Then, the Client continuously check if there is a scheduled attestation.

Attestation. The attestation of the Client has three steps: scheduling/ trig-
gering, computing attestation result, and publishing the result in the blockchain.
In this implementation, the scheduling is done by using a cryptographically se-
cure pseudo-random generator. Specifically, once an attestation is performed,

14 Ankergard et al.

DEVICE
SETTINGS
CLIENT TRANSCATION
) PROCESSOR
RN

REST API VALIDATOR

TRANSACTION
| PROCESSOR
22

RTE
w‘g’.&}m

CONSENSUS
ENGINE

Fig. 5. Hyperledger Sawtooth components for a single device

the schedule is updated by adding a random time to the previously scheduled
time. The seed is generated as a random number using the /dev/urandom Linux
random number generator. Then, the seed is sent along with the attestation re-
sult to allow other devices that know the last scheduled time and the seed to
compute and verify the current scheduled time. To compute the attestation,
we perform the static software measurement of the device. After the result has
been computed, the Client wraps the result, device id, created on date, seed and
scheduled time in a transaction with a message identifier, showing it is a publish
attestation transaction. The Client then wraps the transaction in a batch and
sends it to the Rest API.

6.2 Transaction Processor

The transaction processor has two parts: one part handles the business logic
for the Attestation transaction family and the other one handles the Diffie-
Hellman transaction family. Each of these two parts consists of three components:
the Handler, Payload and State. The Handler contains the business logic for
the transaction family and is the smart contract for the family. The Payload
defines what the transactions for the family must look like. The State contains
the getting and setting of the blockchain state data, as well as serializing and
deserializing the data.

Attestation. The only business rule for attestations to be accepted to the
blockchain is that they have to follow the specified format. This means attes-
tations should specify the attestation message, construct a defined attestation
payload and the transaction, and the batch has to be signed by a key accepted
in the blockchain network.

7 Limitations

While PERMANENT protocol allows devices to store historical results in the
blockchain, the proposed solution also has some limitations.

PERMANENT relies on the PoOET consensus algorithm due to the low com-
putational and communications overhead that this algorithm provides. However,

PERMANENT 15

PoET has a relatively low throughput compared to other consensus algorithms.
This could present an issue if the RA protocol is required to run very frequently
in a large-scale network. However, RA protocols typically do not run very often
to require high throughput. Thus, this limitation is not critical in the setting
where attestations are not performed very often.

Another well-known open research challenge in applying blockchain tech-
nology in IoT is the increased memory requirements. Since the blockchain is
a distributed ledger, every device needs to store the entire blockchain database
with the results of all the devices. If devices have a long lifetime and/or run many
attestations, this database could expand rapidly, possibly beyond the available
memory of the devices.

Furthermore, the blockchain solution introduces extra cryptographic oper-
ations. Cryptographic operations are known to be resource expensive for IoT
devices. So the extra security of the blockchain comes at the computational cost
of the extra cryptographic operations. However, it may require fewer attestations
that also use cryptographic operations, so the total amount of operations might
be the same or less over a longer period.

8 Conclusions and Future work

This paper proposes PERMANENT, a decentralized and publicly verifiable re-
mote attestation protocol that relies on blockchain technology. Instead of de-
ciding the trustworthy state of a device based on the latest attestation result,
the proposed protocol uses the history of attestations to validate the trustwor-
thiness of each IoT device and calculate the corresponding trust score. We pre-
sented the proof-of-concept implementation of the proposed protocol with Hy-
perLedger Sawtooth using Proof-of-Elapsed-Time (PoET) as a consensus mech-
anism, demonstrating the feasibility of the solution.

While in this paper, we assumed that devices that are trustworthy above a
threshold can proceed their interactions, in our future work we will extend the
protocol by providing technical details of group session key establishment among
trusted devices. Moreover, as future work, we plan to perform some performance
optimizations in the proof-of-concept implementation and conduct an empirical
analysis of the protocol’s performance. Another main area of our future work
will be investigating and designing even more efficient blockchain architectures
for IoT devices. Furthermore, we will explore and investigate the possibility
of attesting devices with lightweight cryptographic operations while providing
strong security guarantees.

Acknowledgment

This work is supported by Danish Industry Foundation through project “CIDI
- Cybersecure IoT in Danish Industry” (project number 2018-0197) and the
European Union’s Horizon 2020 Research and Innovation program under Grant
Agreement No. 952697 (ASSURED).

16

Ankergard et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

Abera, T., Asokan, N., Davi, L., Koushanfar, F., Paverd, A., Sadeghi, A.R., Tsudik,
G.: Invited — Things, Trouble, Trust: on Building Trust in IoT Systems. In: Proc.
53rd Annu. Design Autom. Conf. pp. 1-6 (2016)

Abera, T., Bahmani, R., Brasser, F., Ibrahim, A.; Sadeghi, A., Schunter, M.: DIAT:
Data Integrity Attestation for Resilient Collaboration of Autonomous System. In:
Proc. Netw. Distrib. Syst. Secur. Symp. (2019)

. Ambrosin, M., Conti, M., Lazzeretti, R., Rabbani, M., Ranise, S.: Collective Re-

mote Attestation at the Internet of Things Scale: State-of-the-art and Future Chal-
lenges. IEEE Commun. Surv. Tutor. 22(4), 2447-2461 (2020)

Ambrosin, M., Conti, M., Lazzeretti, R., Rabbani, M.M., Ranise, S.: PADS: Prac-
tical Attestation for Highly Dynamic Swarm Topologies. In: Proc. Int. Workshop
Secure Internet Things (SIoT). pp. 18-27 (2018)

Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.R., Schunter, M.:
SANA: Secure and Scalable Aggregate Network Attestation. In: Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. pp. 731-742 (2016)

. Ankergard, S.F.J.J., Dushku, E., Dragoni, N.: State-of-the-Art Software-Based Re-

mote Attestation: Opportunities and Open Issues for Internet of Things. Sensors
21(5) (2021)

Arthur, W., Challener, D.: A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security (2015)

Asokan, N., Brasser, F., Ibrahim, A., Sadeghi, A.R., Schunter, M., Tsudik, G.,
Wachsmann, C.: SEDA: Scalable Embedded Device Attestation. In: Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Secur. pp. 964-975 (2015)

Bampatsikos, M., Ntantogian, C., Xenakis, C., Tomopoulos, S.C.: BARRETT
blockchain regulated remote attestation. Proceedings - 2019 IEEE/WIC/ACM In-
ternational Conf. on Web Intelligence pp. 256-262 (2019)

Brasser, F., El Mahjoub, B., Sadeghi, A.R., Wachsmann, C., Koeberl, P.: TyTAN:
tiny trust anchor for tiny devices. In: n Proc. 52nd Annu. Design Autom. Conf.
pp. 1-6 (2015)

Carpent, X., Rattanavipanon, N., Tsudik, G.: Remote attestation via self-
measurement. ACM Trans. Des. Autom. Electron. Syst. 24(1) (2018)

Conti, M., Dushku, E., Mancini, L.V.: Distributed Services Attestation in IoT. In:
From Database to Cyber Security, pp. 261-273. Springer (2018), ISBN: 978-3-030-
04834-1

Conti, M., Dushku, E., Mancini, L.V.: RADIS: Remote Attestation of Distributed
IoT Services. In: Proc. 6th Int. Conf. Softw. Defined Syst. (SDS). pp. 25-32 (2019)
Dai, H.N., Zheng, Z., Zhang, Y.: Blockchain for Internet of Things: A Survey. IEEE
Internet of Things J. 6(5), 8076-8094 (2019)

Dushku, E., Rabbani, M.M., Conti, M., Mancini, L.V., Ranise, S.: SARA: Secure
Asynchronous Remote Attestation for IoT Systems. IEEE Trans. Inf. Forensics
Security 15, 3123-3136 (2020)

Eldefrawy, K., Tsudik, G., Francillon, A., Perito, D.: SMART": Secure and Minimal
Architecture for (Establishing Dynamic) Root of Trust. In: Proc.19th Annu. Netw.
Distrib. Syst. Secur. Symp. (NDSS). pp. 1-15 (2012)

Favaretto, M., Tran Anh, T., Kavaja, J., De Donno, M., Dragoni, N.: When the
Price Is Your Privacy: A Security Analysis of Two Cheap IoT Devices. Advances
in Intelligent Systems and Computing 925, 55-75 (2020)

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

PERMANENT 17

Garcia Lopez, P., Montresor, A., Datta, A.: Please, do not decentralize the internet
with (permissionless) blockchains! In: 2019 IEEE ICDCS. pp. 1901-1911 (2019)
Giaretta, A., De Donno, M., Dragoni, N.: Adding Salt to Pepper: A Structured
Security Assessment over a Humanoid Robot. In: Proc. of ARES 2018 (2018)
Halld6rsson, R.M., Dushku, E.,; Dragoni, N.: ARCADIS: Asynchronous Remote
Control-Flow Attestation of Distributed IoT Services. IEEE Access 9, 144880—
144894 (2021)

Ibrahim, A., Sadeghi, A.R., Tsudik, G.: US-AID: Unattended scalable attestation
of IoT devices. In: Proc. IEEE 37th Symp. Reliable Distrib. Syst. (SRDS). pp.
21-30 (2018)

Ibrahim, A., Sadeghi, A.R., Zeitouni, S.: SeED: Secure Non-Interactive Attestation
for Embedded Devices. In: Proc. of the 10th ACM Conf. on Security and Privacy
in Wireless and Mobile Networks WiSec ’17. pp. 64-74 (2017)

Jenkins, I.LR., Smith, S.W.: Distributed IoT Attestation via Blockchain. Proceed-
ings - 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing, CCGRID 2020 pp. 798-801 (2020)

Kuang, B., Fu, A., Yu, S., Yang, G., Su, M., Zhang, Y.: ESDRA: An Efficient and
Secure Distributed Remote Attestation Scheme for IoT Swarms. IEEE Internet of
Things J. 6(5), 8372-8383 (2019)

Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., Ghani, N.: Demystifying
ToT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical
Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 21(3),
2702-2733 (2019)

Park, J., Kim, K.: TM-Coin : Trustworthy Management of TCB Measurements in
ToT. In: 2017 IEEE PerCom Workshops. pp. 654-659. IEEE (2017)

Rabbani, M.M., Dushku, E., Vliegen, J., Braecken, A., Dragoni, N., Mentens, N.:
RESERVE: Remote Attestation of Intermittent IoT Devices. In: Proc.19th ACM
Conf. Embed. Networked Sens. Syst. (SenSys). pp. 578-580 (2021)

Rasolroveicy, M., Fokaefs, M.: Performance evaluation of distributed ledger tech-
nologies for IoT data registry: A comparative study. Proc. of WorldS4 2020 pp.
137-144 (2020)

Seshadri, A., Perrig, A., Doorn, L.v., Khosla, P.: SWATT: softWare-based attes-
tation for embedded devices. In: IEEE S & P 2004. pp. 272-282 (2004)

Sokolov, S., Gaskarov, V., Knysh, T., Sagitova, A.: IoT Security: Threats, Risks,
Attacks. Lecture Notes in Civil Engineering 130 LNCE, 47-56 (2021)
Ostergaard, J.H., Dushku, E., Dragoni, N.: ERAMO: Effective Remote Attestation
through Memory Offloading. In: IEEE International Conference on Cyber Security
and Resilience (IEEE-CSR). pp. 73-80 (2021)

