Skip to main content

PERMANENT: Publicly Verifiable Remote Attestation for Internet of Things Through Blockchain

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2021)

Abstract

Remote Attestation (RA) is a security mechanism that allows a centralized trusted entity (Verifier) to check the trustworthiness of a potentially compromised IoT device (Prover). With the tsunami of interconnected IoT devices, the advancement of swarm RA schemes that efficiently attest large IoT networks has become crucial. Recent swarm RA approaches work towards distributing the attestation verification from a centralized Verifier to many Verifiers. However, the assumption of trusted Verifiers in the swarm is not practical in large networks. In addition, the state-of-the-art RA schemes do not establish network-wide decentralized trust among the interacting devices in the swarm. This paper proposes PERMANENT, a Publicly Verifiable Remote Attestation protocol for Internet of Things through Blockchain, which stores the historical attestation results of all devices in a blockchain and allows each interacting device to obtain the attestation result. PERMANENT enables devices to make a trust decision based on the historical attestation results. This feature allows the interaction among trustworthy devices (or with a trust score over a certain threshold) without the computational overhead of attesting every participating device before each interaction. We validate PERMANENT with a proof-of-concept implementation, using Hyperledger Sawtooth as the underlying blockchain. The conducted experiments confirm the feasibility of the PERMANENT protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abera, T., et al.: Invited - things, trouble, trust: on building trust in IoT systems. In: Proceedings of the 53rd Annual Design Automation Conference, pp. 1–6 (2016)

    Google Scholar 

  2. Abera, T., Bahmani, R., Brasser, F., Ibrahim, A., Sadeghi, A., Schunter, M.: DIAT: data integrity attestation for resilient collaboration of autonomous system. In: Proceedings of the Network and Distributed System Security Symposium (2019)

    Google Scholar 

  3. Ambrosin, M., Conti, M., Lazzeretti, R., Rabbani, M., Ranise, S.: Collective remote attestation at the internet of things scale: state-of-the-art and future challenges. IEEE Commun. Surv. Tutor. 22(4), 2447–2461 (2020)

    Article  Google Scholar 

  4. Ambrosin, M., Conti, M., Lazzeretti, R., Rabbani, M.M., Ranise, S.: PADS: practical attestation for highly dynamic swarm topologies. In: Proceedings - 2016 International Workshop on Secure Internet of Things (SIoT). pp. 18–27 (2018)

    Google Scholar 

  5. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.R., Schunter, M.: SANA: secure and scalable aggregate network attestation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 731–742 (2016)

    Google Scholar 

  6. Ankergård, S.F.J.J., Dushku, E., Dragoni, N.: State-of-the-art software-based remote attestation: opportunities and open issues for Internet of Things. Sensors 21(5) (2021)

    Google Scholar 

  7. Arthur, W., Challener, D.: A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security. Apress, Berkeley (2015). https://doi.org/10.1007/978-1-4302-6584-9

  8. Asokan, N., et al.: SEDA: scalable embedded device attestation. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 964–975 (2015)

    Google Scholar 

  9. Bampatsikos, M., Ntantogian, C., Xenakis, C., Tomopoulos, S.C.: BARRETT blockchain regulated remote attestation. In: Proceedings - 2019 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 256–262 (2019)

    Google Scholar 

  10. Brasser, F., El Mahjoub, B., Sadeghi, A.R., Wachsmann, C., Koeberl, P.: TyTAN: tiny trust anchor for tiny devices. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 1–6 (2015)

    Google Scholar 

  11. Carpent, X., Rattanavipanon, N., Tsudik, G.: Remote attestation via self-measurement. ACM Trans. Des. Autom. Electron. Syst. 24(1) (2018)

    Google Scholar 

  12. Conti, M., Dushku, E., Mancini, L.V.: Distributed services attestation in IoT. In: Samarati, P., Ray, I., Ray, I. (eds.) From Database to Cyber Security. LNCS, vol. 11170, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04834-1_14

    Chapter  Google Scholar 

  13. Conti, M., Dushku, E., Mancini, L.V.: RADIS: remote attestation of distributed IoT services. In: Proceedings 6th International Conference on Software Defined System (SDS), pp. 25–32 (2019)

    Google Scholar 

  14. Dai, H.N., Zheng, Z., Zhang, Y.: Blockchain for Internet of Things: a survey. IEEE Internet of Things J. 6(5), 8076–8094 (2019)

    Article  Google Scholar 

  15. Dushku, E., Rabbani, M.M., Conti, M., Mancini, L.V., Ranise, S.: SARA: secure asynchronous remote attestation for IoT systems. IEEE Trans. Inf. Forensics Secur. 15, 3123–3136 (2020)

    Article  Google Scholar 

  16. Eldefrawy, K., Tsudik, G., Francillon, A., Perito, D.: SMART: secure and minimal architecture for (establishing dynamic) root of trust. In: Proceedings of the 19th Annual Network & Distributed System Security Symposium. Network Security (NDSS), pp. 1–15 (2012)

    Google Scholar 

  17. Favaretto, M., Tran Anh, T., Kavaja, J., De Donno, M., Dragoni, N.: When the price is your privacy: a security analysis of two cheap IoT devices. Adv. Intell. Syst. Comput. 925, 55–75 (2020)

    Google Scholar 

  18. Garcia Lopez, P., Montresor, A., Datta, A.: Please, do not decentralize the internet with (permissionless) blockchains! In: 2019 IEEE ICDCS, pp. 1901–1911 (2019)

    Google Scholar 

  19. Giaretta, A., De Donno, M., Dragoni, N.: Adding salt to pepper: a structured security assessment over a humanoid robot. In: Proceedings of ARES 2018 (2018)

    Google Scholar 

  20. Halldórsson, R.M., Dushku, E., Dragoni, N.: ARCADIS: asynchronous remote control-flow attestation of distributed IoT services. IEEE Access 9, 144880–144894 (2021)

    Google Scholar 

  21. Ibrahim, A., Sadeghi, A.R., Tsudik, G.: US-AID: unattended scalable attestation of IoT devices. In: Proceedings of the IEEE 37th Symposium on Reliable Distributed Systems, pp. 21–30 (2018)

    Google Scholar 

  22. Ibrahim, A., Sadeghi, A.R., Zeitouni, S.: SeED: secure non-interactive attestation for embedded devices. In: Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks WiSec 2017, pp. 64–74 (2017)

    Google Scholar 

  23. Jenkins, I.R., Smith, S.W.: Distributed IoT attestation via blockchain. In: Proceedings - 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, CCGRID 2020, pp. 798–801 (2020)

    Google Scholar 

  24. Kuang, B., Fu, A., Yu, S., Yang, G., Su, M., Zhang, Y.: ESDRA: an efficient and secure distributed remote attestation scheme for IoT swarms. IEEE Internet of Things J. 6(5), 8372–8383 (2019)

    Article  Google Scholar 

  25. Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., Ghani, N.: Demystifying IoT security: an exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Commun. Surv. Tutor. 21(3), 2702–2733 (2019)

    Article  Google Scholar 

  26. Park, J., Kim, K.: TM-Coin : Trustworthy management of TCB measurements in IoT. In: 2017 IEEE PerCom Workshops, pp. 654–659. IEEE (2017)

    Google Scholar 

  27. Rabbani, M.M., Dushku, E., Vliegen, J., Braeken, A., Dragoni, N., Mentens, N.: RESERVE: Remote Attestation of Intermittent IoT Devices. In: Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (SenSys), pp. 578–580 (2021)

    Google Scholar 

  28. Rasolroveicy, M., Fokaefs, M.: Performance evaluation of distributed ledger technologies for IoT data registry: A comparative study. In: 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability 2020, pp. 137–144 (2020)

    Google Scholar 

  29. Seshadri, A., Perrig, A., Doorn, L.v., Khosla, P.: SWATT: softWare-based attestation for embedded devices. In: IEEE S & P 2004, pp. 272–282 (2004)

    Google Scholar 

  30. Sokolov, S., Gaskarov, V., Knysh, T., Sagitova, A.: IoT security: threats, risks, attacks. In: Mottaeva, A. (ed.) Proceedings of the XIII International Scientific Conference on Architecture and Construction 2020. LNCE, vol. 130. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6208-6_6

  31. Østergaard, J.H., Dushku, E., Dragoni, N.: ERAMO: effective remote attestation through memory offloading. In: IEEE International Conference on Cyber Security and Resilience (IEEE-CSR), pp. 73–80 (2021)

    Google Scholar 

Download references

Acknowledgment

This work is supported by Danish Industry Foundation through project “CIDI - Cybersecure IoT in Danish Industry” (project number 2018-0197) and the European Union’s Horizon 2020 Research and Innovation program under Grant Agreement No. 952697 (ASSURED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edlira Dushku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ankergård, S.F.J.J., Dushku, E., Dragoni, N. (2022). PERMANENT: Publicly Verifiable Remote Attestation for Internet of Things Through Blockchain. In: Aïmeur, E., Laurent, M., Yaich, R., Dupont, B., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2021. Lecture Notes in Computer Science, vol 13291. Springer, Cham. https://doi.org/10.1007/978-3-031-08147-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08147-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08146-0

  • Online ISBN: 978-3-031-08147-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics