Abstract
Transciphering allows to workaround the large expansion of the size of FHE encrypted data, thanks to the use of symmetric cryptography. Transciphering is a recryption technique that delegates the effective homomorphic encryption to the cloud. As a result, a client only has to encrypt (once) a symmetric key \({\textsf {SYM}}.\!{\textsf {sk}}\) under a homomorphic encryption system, while his payload data are encrypted under \({\textsf {SYM}}.\!{\textsf {sk}}\) using the chosen symmetric encryption algorithm.
In this work, we study the performances of some symmetric encryption algorithms in light of the TFHE cryptosystem and its properties. This allows us to unleash the use of additional existing symmetric algorithms which were not viable candidates for efficient encrypted domain execution with levelled-FHEs. In particular, we provide experimental evidences that Grain128-AEAD, a well established and well respected stream-cipher which is a finalist of the NIST competition for light-weight cryptography, is amenable to practical performances when run in the encrypted domain. As such, our work extends practical transciphering capabilities to include authenticated encryption for the first time.
The research leading to these results has been funded in part from the European Union’s Preparatory Action on Defence Research (PADR-FDDT-OPEN-03-2019). This paper reflects only the authors’ views and the Commission is not liable for any use that may be made of the information contained therein.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The multiplicative depth of a circuit is the maximum number of successive multiplications in the circuit.
- 2.
As a general guidelines, the first rule of optimization for FHE is to find (legitimate) ways of doing less FHE calculations.
- 3.
Linear/Non-linear feeadback shift register.
- 4.
Of course, comparison cannot be done per se in the encrypted domain, so if the \(\mu _i\)’s denotes the bits of the received MAC and the \([\mu '_i]\)’s denote the FHE encryptions of the bits of the (homomorphically) computed one, the cloud has to compute \(\prod _i(1\oplus \mu _i\oplus [\mu '_i])=[b]\).
- 5.
I.e., putting a into x when c is true, b otherwise, can be written has \(x:=ca\oplus (1\oplus c)b\).
- 6.
- 7.
A small number of additions and multiplications (only three) per round.
- 8.
LFSR/NFSR update, non linear function application and register shifting (register shifting being almost free).
- 9.
To be fair, these throughputs could be increased to around 2000 bits/min with 600 slots of batching, however with FHE security parameters which are now outdated (due to recent advances in LWE-based systems cryptanalysis); so as an order of magnitude we should expect all the throughputs given in [9] to be divided by around 5. Still, as already stated, batching-based improvements in throughput are not applicable when using TFHE.
References
Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128 with optional authentication. IJWMC 5, 48–59 (2011)
Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. Cryptology ePrint Archive Report 2016/687 (2016). https://eprint.iacr.org/2016/687
Albrecht, M.R., et al.: Feistel structures for MPC, and more. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_8
Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17
Aubry, P., Carpov, S., Sirdey, R.: Faster homomorphic encryption is not enough: improved heuristic for multiplicative depth minimization of Boolean circuits. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 345–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_15
Boudguiga, A., Letailleur, J., Sirdey, R., Klaudel, W.: Enhancing CAN security by means of lightweight stream-ciphers and protocols. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 235–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1_19
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS 2012, pp. 309–325. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2090236.2090262
Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. In: FSE, pp. 313–333 (2016)
Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. J. Cryptol. 31(3), 885–916 (2018). https://doi.org/10.1007/s00145-017-9273-9
Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. J. Cryptol. 31(3), 885–916 (2018). https://doi.org/10.1007/s00145-017-9273-9. https://hal.inria.fr/hal-01650012
Carpov, S., Aubry, P., Sirdey, R.: A multi-start heuristic for multiplicative depth minimization of Boolean circuits. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 275–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8_23
Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: a compilation chain for privacy preserving applications. In: Bao, F., Miller, S., Chow, S.S.M., Yao, D. (eds.) Proceedings of the 3rd International Workshop on Security in Cloud Computing, SCC@ASIACCS 2015, Singapore, Republic of Singapore, 14 April 2015, pp. 13–19. ACM (2015). https://doi.org/10.1145/2732516.2732520
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. Cryptology ePrint Archive Report 2018/421 (2018). https://eprint.iacr.org/2018/421
Cid, C., Indrøy, J.P., Raddum, H.: FASTA - a stream cipher for fast FHE evaluation. Cryptology ePrint Archive Report 2021/1205 (2021). https://ia.cr/2021/1205
De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_18
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM, New York (2009). https://doi.org/10.1145/1536414.1536440
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Hell, M., Johansson, T., Maximov, A., Meier, W., Yoshida, H.: Grain-128AEADv2: strengthening the initialization against key reconstruction. Cryptology ePrint Archive Report 2021/751 (2021). https://ia.cr/2021/751
Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, using FiLIP and TFHE for an efficient delegation of computation. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 39–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_3
Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, using FiLIP and TFHE for an efficient delegation of computation. Cryptology ePrint Archive Report 2020/1373 (2020). https://eprint.iacr.org/2020/1373
Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20
Méaux, P., Carlet, C., Journault, A., Standaert, F.-X.: Improved filter permutators for efficient FHE: better instances and implementations. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 68–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_4
Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_13
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009). https://doi.org/10.1145/1568318.1568324
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Bendoukha, AA., Boudguiga, A., Sirdey, R. (2022). Revisiting Stream-Cipher-Based Homomorphic Transciphering in the TFHE Era. In: Aïmeur, E., Laurent, M., Yaich, R., Dupont, B., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2021. Lecture Notes in Computer Science, vol 13291. Springer, Cham. https://doi.org/10.1007/978-3-031-08147-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-08147-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08146-0
Online ISBN: 978-3-031-08147-7
eBook Packages: Computer ScienceComputer Science (R0)