Skip to main content

Autoregressive Deep Learning Models for Bridge Strain Prediction

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2022)

Abstract

Infrastructures are often subjected to harsh loading scenarios and severe environmental conditions, not anticipated during design, which result in their long-term structural deterioration. Thus, monitoring and maintaining the urban infrastructure is critical for the resilience. In this research, the authors present a modeling approach, for the prediction of future strain values in a Dutch Highway Bridge, based on eleven Deep Learning (DL) algorithms. Previous strain measurements were used as input. The performance of the developed Machine Learning model was evaluated using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and R square (R2) indices. The Fast Fourier Transform (FFT) was employed for the pre-processing of the involved time series. The obtained results are extremely promising for predicting the performance under design loads. All algorithms have proven their capacity to successfully predict the fluctuations of strain values. The authorities responsible for the function and management of the bridge, can feel confident to rely on these models in order to schedule in time proper maintenance works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fallahian, M., Khoshnoudian, F., Meruane, V.: Ensemble classification method for structural damage assessment under varying temperature. Struct. Health Monit. 17(4), 747–762 (2018)

    Article  Google Scholar 

  2. Cunha, A., Caetano, E., Magalhes, F., Moutinho, C.: Recent perspectives in dynamic testing and monitoring of bridges. Struct. Control Health Monit. 20, 853877 (2013)

    Article  Google Scholar 

  3. Li, H., Li, S., Ou, J., Li, H.: Modal identification of bridges under varying environmental conditions: temperature and wind effects. Struct.Control Health Monit. 17, 495512 (2010)

    Article  Google Scholar 

  4. Xia, Y., Chen, B., Zhou, X.Q., Xu, Y.L.: Field monitoring and numerical analysis of Tsing Ma suspension bridge temperature behavior. Struct. Control. Health Monit. 20(4), 560–575 (2013). https://doi.org/10.1002/stc.515

    Article  Google Scholar 

  5. Miao, S., Koenders, E.A.B., Knobbe, A.: Automatic baseline correction of strain gauge signals. Struct. Control Health Monit, 22(1), 36–49 (2014). ISSN 1545-2263

    Google Scholar 

  6. Vespier, U., Nijssen, S., Knobbe, A.: Mining characteristic multi-scale motifs in sensor-based time series. In: International Conference on Information and Knowledge Management, Proceedings, pp. 2393–2398 (2013). https://doi.org/10.1145/2505515.2505620

  7. Miao, S., Vespier, U., Vanschoren, J., Knobbe, A., Cachucho, R.: Modeling sensor dependencies between multiple sensor types (2013)

    Google Scholar 

  8. Vespier, U., Knobbe, A.J., Nijssen, S., Vanschoren, J.: MDL-based identification of relevant temporal scales in time series (2012)

    Google Scholar 

  9. Knobbe, A., et al.: InfraWatch: data management of large systems for monitoring infrastructural performance. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds.) IDA 2010. LNCS, vol. 6065, pp. 91–102. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13062-5_10

    Chapter  Google Scholar 

  10. Farrar, C., Hemez, F., Shunk, D., Stinemates, D., Nadler, B.: A review of structural health monitoring literature: 1996–2001 (2004)

    Google Scholar 

  11. Wegenwiki: Hollandse Brug. https://www.wegenwiki.nl/index.php?title=Hollandse_Brug&mobileaction=toggle_view_mobile. Accessed 23 Feb 2022

  12. Witkin, A.P.: Scale-space filtering. In: IJCAI (1983)

    Google Scholar 

  13. Miao, S., Knobbe, A., Vanschoren, J., Vespier, U., Chen, X.: A range of data mining techniques to correlate multiple sensor types (2011)

    Google Scholar 

  14. Vespier, U., et al.: Traffic events modeling for structural health monitoring. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 376–387. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24800-9_35

    Chapter  Google Scholar 

  15. Knobbe, A.J., Koopman, A., Kok, J.N., Obladen, B., Bosma, C., Koenders, E.: Large data stream processing for bridge management systems (2010)

    Google Scholar 

  16. Li, X., Yu, W., Villegas, S.: Structural health monitoring of building structures with online data mining methods. IEEE Syst. J. 10, 1–10 (2015). https://doi.org/10.1109/JSYST.2015.2481380

    Article  Google Scholar 

  17. Seborg, D.: Pattern matching in multivariate time series databases using a moving-window approach. Ind. Eng. Chem. Res. 41, 3822–3838 (2002). https://doi.org/10.1021/ie010517z

    Article  Google Scholar 

  18. Brigham, E.O.: The FAST FOURIER TRANSFORM and Its Applications. Prentice-Hall, Inc., Hoboken (1988)

    Google Scholar 

  19. Zhang, Z.: Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Trans. Biomed. Eng. 62(8), 1902–1910 (2015)

    Article  Google Scholar 

  20. Nussbaumer, H.J. The fast Fourier transform. In: Prince, E. (ed.) Fast Fourier Transform and Convolution Algorithms, pp. 80–111. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-97576-9_10

  21. Rhif, M., Ben Abbes, A., Farah, I.R., Martínez, B., Sang, Y.: Wavelet transform application for/in non-stationary time-series analysis: a review. Appl. Sci. 9(7), 1345 (2019)

    Article  Google Scholar 

  22. Paparoditis, E., Politis, D.N.: The asymptotic size and power of the augmented Dickey-Fuller test for a unit root. Economet. Rev. 37(9), 955–973 (2018)

    Article  MathSciNet  Google Scholar 

  23. Baum, C.: KPSS: stata module to compute Kwiatkowski-Phillips-Schmidt-Shin test for stationarity (2018)

    Google Scholar 

  24. Churchill, S.A., Inekwe, J., Ivanovski, K., Smyth, R.: Stationarity properties of per capita CO2 emissions in the OECD in the very long-run: a replication and extension analysis. Energy Econ. 90, 104868 (2020)

    Article  Google Scholar 

  25. Peter, Ď., Silvia, P.: ARIMA vs. ARIMAX–which approach is better to analyze and forecast macroeconomic time series. In: Proceedings of 30th International Conference Mathematical Methods in Economics, vol. 2, pp. 136–140, September 2012

    Google Scholar 

  26. Reese, H.: Understanding the differences between AI, machine learning, and deep learning (2017). https://www.techrepublic.com/article/understandingthedifferencesbetweenaimachinelearninganddeeplearning

  27. Papadopoulos, K.: SeriesNet: a dilated causal convolutional neural network for forecasting. In: Proceedings of the International Conference on Pattern Recognition and Machine Intelligence, Union, NJ, USA, pp. 1–4, August 2018

    Google Scholar 

  28. Oord, A.V.D., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  29. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)

    Article  Google Scholar 

  30. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)

  31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  32. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D 404, 132306 (2020)

    Article  MathSciNet  Google Scholar 

  33. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  34. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based dependency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075 (2015)

  35. Cui, Z., Ke, R., Pu, Z., Wang, Y.: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp. Res. Part C Emerg. Technol. 118, 102674 (2020)

    Article  Google Scholar 

  36. Gao, S., et al.: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J. Hydrol. 589, 125188 (2020)

    Article  Google Scholar 

  37. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  38. Psathas, A.P., Iliadis, L., Papaleonidas, A., Bountas, D.: A hybrid deep learning ensemble for cyber intrusion detection. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds.) EANN 2021. PINNS, vol. 3, pp. 27–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80568-5_3

    Chapter  Google Scholar 

  39. Brazil, T.J.: Causal-convolution - a new method for the transient analysis of linear systems at microwave frequencies. IEEE Trans. Microw. Theory Tech. 43(2), 315–323 (1995)

    Article  Google Scholar 

  40. Robinson, J., Kuzdeba, S., Stankowicz, J., Carmack, J.M.: Dilated causal convolutional model for RF fingerprinting. In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0157–0162. IEEE, January 2020

    Google Scholar 

  41. Israeli, O.: A Shapley-based decomposition of the R-square of a linear regression. J. Econ. Inequal. 5(2), 199–212 (2007)

    Article  Google Scholar 

  42. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev 7(3), 1247–1250 (2014)

    Article  Google Scholar 

  43. Ketkar, N.: Introduction to keras. In: Deep learning with Python, pp. 97–111. Apress, Berkeley (2017)

    Google Scholar 

  44. Dillon, J.V., et al.: Tensorflow distributions. arXiv preprint arXiv:1711.10604 (2017)

  45. Li, Y., Zhu, Z., Kong, D., Han, H., Zhao, Y.: EA-LSTM: evolutionary attention-based LSTM for time series prediction. Knowl.-Based Syst. 181, 104785 (2019)

    Article  Google Scholar 

  46. Siami-Namini, S., Tavakoli, N., Namin, A.S.: A comparison of ARIMA and LSTM in forecasting time series. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1394–1401. IEEE, December 2018

    Google Scholar 

  47. Nations, U.: Transforming our world: the 2030 agenda for sustainable development. Department of Economic and Social Affairs, United Nations, New York (2015)

    Google Scholar 

  48. Kromanis, R.: Health monitoring of bridges. In: Start-Up Creation, pp. 369–389. Woodhead Publishing (2020)

    Google Scholar 

  49. Argyroudis, S.A., Achillopoulou, D.V., Livina, V., Mitoulis, S.A.: Data-driven resilience assessment for transport infrastructure exposed to multiple hazards. In: Proceedings of the 10th International Conference on Bridge Maintenance, Safety and Management (IABMAS2020). University of Surrey, April 2021

    Google Scholar 

  50. Argyroudis, S.A., et al.: Digital technologies can enhance climate resilience of critical infrastructure. Clim. Risk Manag. 35 (2022)

    Google Scholar 

  51. Achillopoulou, D.V., Mitoulis, S.A., Argyroudis, S.A., Wang, Y.: Monitoring of transport infrastructure exposed to multiple hazards: a roadmap for building resilience. Sci. Total Environ. 746, 141001 (2020)

    Article  Google Scholar 

  52. Tatsis, K., Dertimanis, V., Ou, Y., Chatzi, E.: GP-ARX-Based structural damage detection and localization under varying environmental conditions. J. Sens. Actuator Netw. 9(3), 41 (2020)

    Article  Google Scholar 

  53. InfraWatch progect. https://infrawatch.liacs.nl/. Accessed 23 Feb 2022

Download references

Acknowledgments

We acknowledge support of this work by the project “Risk and Resilience Assessment Center – Prefecture of East Macedonia and Thrace - Greece.” (MIS 5047293) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Panagiotis Psathas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Psathas, A.P. et al. (2022). Autoregressive Deep Learning Models for Bridge Strain Prediction. In: Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2022. Communications in Computer and Information Science, vol 1600. Springer, Cham. https://doi.org/10.1007/978-3-031-08223-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08223-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08222-1

  • Online ISBN: 978-3-031-08223-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics