Skip to main content

An IoT Authentication Framework for Urban Infrastructure Security Using Blockchain and Deep Learning

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2022)

Abstract

Internet of Things (IoT) enables increased connectivity between devices. However, this benefit also intrinsically increases cybersecurity risks as cyber attackers are provided with expanded network access and additional digital targets. To address this issue, this paper presents a holistic digital and physical cybersecurity user authentication framework, based on Blockchain and Deep Learning (BLDE) algorithms. The introduced user authentication framework, provides an additional layer of resilience against Cybersecurity attacks that may arise through the IoT. Moreover, it controls digital access through the seven OSI layers and via the physical user’s identity, such as finger prints or self-images, before the user is accepted in the IoT network. Finally, it offers many layers of security through its decentralized and distributed nature, in order to reduce the system’s vulnerability from cyber threats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alqahtani, H., Sarker, I.H., Kalim, A., Minhaz Hossain, S., Ikhlaq, S., Hossain, S.: Cyber intrusion detection using machine learning classification techniques. In: Chaubey, N., Parikh, S., Amin, K. (eds.) COMS2 2020. CCIS, vol. 1235, pp. 121–131. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6648-6_10

    Chapter  Google Scholar 

  2. Ashton, K.: That ‘Internet of Things’ thing. RFID J. 22(7), 97–114 (2009)

    Google Scholar 

  3. Wortmann, F., Flüchter, K.: Internet of things. Bus. Inf. Syst. Eng. 57(3), 221–224 (2015)

    Article  Google Scholar 

  4. Stojkoska, B.L.R., Trivodaliev, K.V.: A review of Internet of Things for smart home: challenges and solutions. J. Clean. Prod. 140, 1454–1464 (2017)

    Article  Google Scholar 

  5. Andrea, I., Chrysostomou, C., Hadjichristofi, G.: Internet of Things: security vulnerabilities and challenges. In: IEEE Symposium on Computers and Communication, pp. 180–187 (2015)

    Google Scholar 

  6. Mohammadi, S., Mirvaziri, H., Ghazizadeh-Ahsaee, M., Karimipour, H.: Cyber intrusion detection by combined feature selection algorithm. J. Inf. Secur. Appl. 44, 80–88 (2019)

    Google Scholar 

  7. Tavallaee, M., Stakhanova, N., Ghorbani, A.A.: Toward credible evaluation of anomaly-based intrusion-detection methods. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(5), 516–524 (2010)

    Article  Google Scholar 

  8. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2015)

    Article  Google Scholar 

  9. Psathas, A.P., Iliadis, L., Papaleonidas, A., Bountas, D.: A hybrid deep learning ensemble for cyber intrusion detection. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds.) EANN 2021. PINNS, vol. 3, pp. 27–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80568-5_3

    Chapter  Google Scholar 

  10. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  11. Huh, S., Cho, S., Kim, S.: Managing IoT devices using Blockchain platform. In: International Conference on Advanced Communication Technology, pp. 464–467 (2017)

    Google Scholar 

  12. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain systems. Futur. Gener. Comput. Syst. 107, 841–853 (2020)

    Article  Google Scholar 

  13. Yu, J., Lee, H., Kim, M.S., Park, D.: Traffic flooding attack detection with SNMP MIB using SVM. Comput. Commun. 31(17), 4212–4219 (2008)

    Article  Google Scholar 

  14. Kulkarni, R.V., Venayagamoorthy, G.K.: Neural network based secure media access control protocol for wireless sensor networks. In: Proceedings of the International Joint Conference on Neural Networks, pp. 3437–3444, June 2009

    Google Scholar 

  15. Branch, J.W., Giannella, C., Szymanski, B., Wolff, R., Kargupta, H.: In-network outlier detection in wireless sensor networks. Knowl. Inform. Syst. 34(1), 23–54 (2013)

    Article  Google Scholar 

  16. Shi, C., Liu, J., Liu, H., Chen, Y.: Smart user authentication through actuation of daily activities leveraging WiFi-enabled IoT. In: Proceedings of the ACM International Symposium on Mobile AdHoc Networking and Computing, pp. 1–10, July 2017

    Google Scholar 

  17. Bostani, H., Sheikhan, M.: Hybrid of anomaly-based and specification-based IDS for Internet of Things using unsupervised OPF based on MapReduce approach. Comput. Commun. 98, 52–71 (2017)

    Article  Google Scholar 

  18. Pointcheval, D.: Neural Networks and their Cryptographic Applications. Livre des resumes Eurocode Institute for Research in Computer Science and Automation, 1–7 (1994)

    Google Scholar 

  19. Kinzel, W., Kanter, I.: Interacting neural networks and cryptography secure exchange of information by synchronization of neural networks. In: Kramer, B. (eds.) Advances in Solid State Physics. ASSP, vol. 42, 383–391. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45618-X_30

  20. Klimov, A., Mityagin, A., Shamir, A.: Analysis of neural cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 288–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_18

    Chapter  Google Scholar 

  21. Volna, E., Kotyrba, M., Kocian, V., Janosek, M.: Cryptography based on the neural network. In: European Conference on Modelling and Simulation, pp. 1–6 (2012)

    Google Scholar 

  22. Yayık, A., Kutlu, Y.: Neural network based cryptography. Int. J. Neural Mass - Parallel Comput. Inf. Syst. 24(2), 177–192 (2014)

    Google Scholar 

  23. Xu, D., Xiao, L., Sun, L., Lei, M.: Game theoretic study on blockchain based secure edge networks. In: IEEE International Conference on Communications in China, pp. 1–5 (2017)

    Google Scholar 

  24. Cha, S.-C., Yeh, K.-H.: An ISO/IEC 15408-2 compliant security auditing system with blockchain technology. In: IEEE Conference on Communications and Network Security, pp. 1–2 (2018)

    Google Scholar 

  25. Gai, K., Raymond, K.-K., Zhu, L.: Blockchain-enabled reengineering of cloud datacenters. IEEE Cloud Comput. 5(6), 21–25 (2018)

    Article  Google Scholar 

  26. Gupta, Y., Shorey, R., Kulkarni, D., Tew, J.: The applicability of blockchain in the Internet of Things. In: IEEE International Conference on Communication Systems & Networks, pp. 561–564 (2018)

    Google Scholar 

  27. Agrawal, R., et al.: Continuous security in IoT using blockchain. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6423–6427 (2018)

    Google Scholar 

  28. Serrano, W.: The blockchain random neural network in cybersecurity and the Internet of Things. In: MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2019. IAICT, vol. 559, pp. 50–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19823-7_4

    Chapter  Google Scholar 

  29. Giannoutakis, K.M., et al.: A blockchain solution for enhancing cybersecurity defence of IoT. In: 2020 IEEE International Conference on Blockchain (Blockchain), pp. 490–495. IEEE, November 2020

    Google Scholar 

  30. Demertzis, K., Iliadis, L., Tziritas, N., Kikiras, P.: Anomaly detection via blockchained deep learning smart contracts in industry 4.0. Neural Comput. Appl. 32(23), 17361–17378 (2020)

    Google Scholar 

  31. Yaga, D.J., Mell, P.M., Roby, N., Scarfone, K.: Blockchain technology overview. Nat. Inst. Standards Technol., Gaithersburg, MD, USA, Technical report 8202 (2018)

    Google Scholar 

  32. Yu, Y., Li, Y., Tian, J., Liu, J.: Blockchain-based solutions to security and privacy issues in the Internet of Things. IEEE Wirel. Commun. 25(6), 12–18 (2018)

    Article  Google Scholar 

  33. Arif, S., Khan, M.A., Rehman, S.U., Kabir, M.A., Imran, M.: Investigating smart home security: is blockchain the answer? IEEE Access 8, 117802–117816 (2020)

    Article  Google Scholar 

  34. Yeung, D.S., Li, J.C., Ng, W.W., Chan, P.P.: MLPNN training via a multiobjective optimization of training error and stochastic sensitivity. IEEE Trans. Neural Netw. Learn. Syst. 27(5), 978–992 (2015)

    Article  MathSciNet  Google Scholar 

  35. Baek, J., Choi, Y.: Deep neural network for predicting ore production by truck-haulage systems in open-pit mines. Appl. Sci. 10(5), 1657 (2020)

    Article  Google Scholar 

  36. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  37. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458(2015)

  38. Lin, I.-C., Liao, T.-C.: A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 19, 653–659 (2017)

    Google Scholar 

  39. Wilson, L.: GPU prices and cryptocurrency returns. Appl. Financ. Lett. 11(1), 2–8 (2022)

    Google Scholar 

  40. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012). https://dl.acm.org/doi/10.5555/2999134.2999257

  41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556(2014)

  42. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Panagiotis Psathas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Psathas, A.P., Iliadis, L., Papaleonidas, A., Bountas, D. (2022). An IoT Authentication Framework for Urban Infrastructure Security Using Blockchain and Deep Learning. In: Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2022. Communications in Computer and Information Science, vol 1600. Springer, Cham. https://doi.org/10.1007/978-3-031-08223-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08223-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08222-1

  • Online ISBN: 978-3-031-08223-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics