Skip to main content

A Gene Ontology-Driven Wide and Deep Learning Architecture for Cell-Type Classification from Single-Cell RNA-seq Data

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2022)

Abstract

Recent advances in single-cell RNA-sequencing in order to study cells in biology, and the increasing amount of data available, led to the development of algorithms for analyzing single cells from gene expression data. In this work, we propose an artificial intelligence architecture that classifies cell types of human tissue. This architecture combines a deep learning model based on the convolutional neural network (CNN) with a wide model. The classification model integrates the concept of functional genes neighbourhood, based on Gene Ontology, in the CNN model (deep part) and the information on biologically relevant marker genes for each cell type in the underlying human tissue (wide part). This approach leads to a gene ontology-driven wide and deep learning model. We tested the proposed architecture with seven human tissue datasets and compared achieved results against three reference literature algorithms. Although the cell-type classification problem is heavily data-dependent, our model performed equal or better than the other models within each tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelaal, T., et al.: A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol. 20(1), 194 (2019). https://doi.org/10.1186/s13059-019-1795-z

  2. Ahmed, O., Brifcani, A.: Gene expression classification based on deep learning, pp. 145–149 (2019). https://doi.org/10.1109/SICN47020.2019.9019357

  3. Alquicira-Hernandez, J., Sathe, A., Ji, H.P., et al.: scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol. 20(1), 264 (2019). https://doi.org/10.1186/s13059-019-1862-5

    Article  Google Scholar 

  4. Aran, D., Looney, A.P., Liu, L., et al.: Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20(2), 163–172 (2019). https://doi.org/10.1038/s41590-018-0276-y

    Article  Google Scholar 

  5. Boufea, K., Seth, S., Batada, N.N.: scID uses discriminant analysis to identify transcriptionally equivalent cell types across single-cell RNA-seq data with batch effect. iScience 23(3), 100914 (2020). https://doi.org/10.1016/j.isci.2020.100914

  6. Canakoglu, A., Nanni, L., Sokolovsky, A.: Designing and Evaluating Deep Learning Models for Cancer Detection on Gene Expression Data, pp. 249–261 (2020). https://doi.org/10.1007/978-3-030-34585-3_22

  7. Cao, Y., Wang, X., Peng, G.: SCSA: a cell type annotation tool for single-cell RNA-seq data. Front. Genet. 11, 490–490 (2020). https://doi.org/10.3389/fgene.2020.00490

    Article  Google Scholar 

  8. Carbon, S., Douglass, E., et al.: The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 49(D1), D325–D334 (2021). https://doi.org/10.1093/nar/gkaa1113

    Article  Google Scholar 

  9. Chen, G., Ning, B., Shi, T.: Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. 10, 317 (2019)

    Article  Google Scholar 

  10. Cheng, H.T., Engineer, S.S., Research, G.: Wide & deep learning: Better together with tensorflow, https://ai.googleblog.com/2016/06/wide-deep-learning-better-together-with.html

  11. Enge, M., et al.: Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171(2), 321–330.e14 (2017). https://doi.org/10.1016/j.cell.2017.09.004

  12. Hao, Y., et al.: Integrated analysis of multimodal single-cell data. Cell (2021). https://doi.org/10.1016/j.cell.2021.04.048

  13. Idikio, H.A.: Human cancer classification: a systems biology- based model integrating morphology, cancer stem cells, proteomics, and genomics. J. Cancer 2, 107–115 (2011)

    Article  Google Scholar 

  14. Institute, B.: Study: ICA: blood mononuclear cells (2 donors, 2 sites). https://singlecell.broadinstitute.org/single_cell/study/SCP345/ica-blood-mononuclear-cells-2-donors-2-sites

  15. de Kanter, J.K., Lijnzaad, P., Candelli, T., et al.: CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing. Nucleic Acids Res. 47(16), e95–e95 (2019). https://doi.org/10.1093/nar/gkz543

    Article  Google Scholar 

  16. Kiselev, V.Y., Yiu, A., Hemberg, M.: scmap: projection of single-cell RNA-seq data across data sets. Nat. Meth. 15(5), 359–362 (2018). https://doi.org/10.1038/nmeth.4644

    Article  Google Scholar 

  17. Li, C., Liu, B., Kang, B., et al.: SciBet as a portable and fast single cell type identifier. Nat. Commun. 11(1), 1818 (2020). https://doi.org/10.1038/s41467-020-15523-2

    Article  Google Scholar 

  18. Ma, F., Pellegrini, M.: ACTINN: automated identification of cell types in single cell RNA sequencing. Bioinformatics 36(2), 533–538 (2019). https://doi.org/10.1093/bioinformatics/btz592

    Article  Google Scholar 

  19. Shao, X., Liao, J., Lu, X., et al.: scCATCH: automatic annotation on cell types of clusters from single-cell RNA sequencing data. iScience 23(3), 100882 (2020). https://doi.org/10.1016/j.isci.2020.100882

  20. Shao, X., Yang, H., Zhuang, X., et al.: scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network. Nucleic Acids Res. 49(21), e122–e122 (2021). https://doi.org/10.1093/nar/gkab775

  21. Stewart, B.J., Ferdinand, J.R., Young, M.D., et al.: Spatiotemporal immune zonation of the human kidney. Science 365(6460), 1461–1466 (2019). https://doi.org/10.1126/science.aat5031

    Article  Google Scholar 

  22. Tan, Y., Cahan, P.: SingleCellNet: a computational tool to classify single cell RNA-seq data across platforms and across species. Cell Syst. 9(2), 207-213.e2 (2019). https://doi.org/10.1016/j.cels.2019.06.004

    Article  Google Scholar 

  23. Urso, A., Fiannaca, A., La Rosa, M., Ravì, V., Rizzo, R.: Data mining: classification and prediction. In: Encyclopedia of Bioinformatics and Computational Biology, pp. 384–402. Elsevier (2019). https://doi.org/10.1016/B978-0-12-809633-8.20461-5

  24. Urso, A., Fiannaca, A., La Rosa, M., Ravì, V., Rizzo, R.: Data mining: prediction methods. In: Encyclopedia of Bioinformatics and Computational Biology, pp. 413–430. Elsevier (2019). https://doi.org/10.1016/B978-0-12-809633-8.20462-7

  25. Wang, T., Bai, J., Nabavi, S.: Single-cell classification using graph convolutional networks. BMC Bioinform. 22(1), 364–364 (2021). https://doi.org/10.1186/s12859-021-04278-2

    Article  Google Scholar 

  26. Wilson, C.M., Fridley, B.L., Conejo-Garcia, J.R., et al.: Wide and deep learning for automatic cell type identification. Comput. Struct. Biotechnol. J. 19, 1052–1062 (2021). https://doi.org/10.1016/j.csbj.2021.01.027

    Article  Google Scholar 

  27. Wu, S.Z., Roden, D.L., Wang, C., et al.: Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39(19), e104063–e104063 (2020)

    Google Scholar 

  28. Zhang, A.W., O’Flanagan, C., Chavez, E.A., et al.: Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling. Nat. Meth. 16(10), 1007–1015 (2019). https://doi.org/10.1038/s41592-019-0529-1

    Article  Google Scholar 

  29. Zhang, Z., Luo, D., Zhong, X., et al.: SCINA: a semi-supervised subtyping algorithm of single cells and bulk samples. Genes 10(7), 531 (2019). https://doi.org/10.3390/genes10070531

    Article  Google Scholar 

  30. Zhao, C., Wang, Z.: GOGO: an improved algorithm to measure the semantic similarity between gene ontology terms. Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-33219-y

  31. Zhao, X., Wu, S., Fang, N., Sun, X., Fan, J.: Evaluation of single-cell classifiers for single-cell RNA sequencing data sets. Brief. Bioinform. 21(5), 1581–1595 (2020). https://doi.org/10.1093/bib/bbz096

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Fiannaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coppola, G., Fiannaca, A., La Rosa, M., La Paglia, L., Urso, A., Gaglio, S. (2022). A Gene Ontology-Driven Wide and Deep Learning Architecture for Cell-Type Classification from Single-Cell RNA-seq Data. In: Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2022. Communications in Computer and Information Science, vol 1600. Springer, Cham. https://doi.org/10.1007/978-3-031-08223-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08223-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08222-1

  • Online ISBN: 978-3-031-08223-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics