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Abstract. Decision Forests have attracted the academic community’s
interest mainly due to their simplicity and transparency. This paper pro-
poses two novel decision forest building techniques, called Maximal Infor-
mation Coefficient Forest (MICF) and Pearson’s Correlation Coefficient
Forest (PCCF). The proposed new algorithms use Pearson’s Correlation
Coefficient (PCC) and Maximal Information Coefficient (MIC) as extra
measures of the classification capacity score of each feature. Using those
approaches, we improve the picking of the most convenient feature at
each splitting node, the feature with the greatest Gain Ratio. We conduct
experiments on 12 datasets that are available in the publicly accessible
UCI machine learning repository. Our experimental results indicate that
the proposed methods have the best average ensemble accuracy rank of
1.3 (for MICF) and 3.0 (for PCCF), compared to their closest competitor,
Random Forest (RF), which has an average rank of 4.3. Additionally, the
results from Friedman and Bonferroni-Dunn tests indicate statistically
significant improvement.

Keywords: Decision forests · Tree-based learning · Ensemble
learning · Classification · Machine learning

1 Introduction

Technological development has altered our approach to data management
throughout the years. Data mining is currently being used for diverse datasets,
aiming to discover hidden patterns and generate suitable predictions and/or
descriptions. Data mining is set of techniques that extract hidden information
such as patterns, correlations, or rules from massive data. Classification is highly
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essential in the field of data mining for both predicting the ‘class’ of an unknown
instance and identifying trends in data. Furthermore, machines are increasingly
being held accountable for societal decisions and various domains such as injus-
tice [24], medicine [20], policing [19], and education [8,9], while the algorithmic
transparency is an undeniable characteristic, they must have. Algorithms func-
tioning as black boxes produce results and decisions that humans are eager to
follow since they are proven to be helpful. Errors do exist and will continue to
occur regardless of how much the underlying systems grow as more data becomes
accessible to them, and more sophisticated algorithms learn from it. This aware-
ness has given rise to either focusing more on more transparent algorithms such
as decision trees and decision forests or trying to transparentise classical black-
box algorithms such as Neural Networks.

Decision forests are a popular classification method, as they can learn the pat-
terns in a dataset in an easy way that closely matches human thinking. Impor-
tantly, unlike other classifiers (e.g., neural networks, k-nearest neighbours, and
support vector machines), decision forests can train on both categorical and
numerical data [18], and generate human-interpretable knowledge [22], which
enable them to increase their application domains further. Decision forests are con-
sidered among the fastestmachine learning algorithms in terms of training, testing,
and predicting. It comes as no surprise that improving classification accuracy on
unknown data within the restrictions given by the training data is a desirable goal.

In this paper, we propose two novel decision forest building methods, i.e., the
Maximal Information Coefficient Forest (MICF) and the Pearson’s Correlation
Coefficient Forest (PCCF). We aim to achieve a higher classification accuracy,
than other famous variants of the decision forest algorithms, including Bagging,
Random Subspace, Random Forest and Random Features Weights.

The rest of the present paper is organised as follows: Sect. 2 describes the
related work. Our novel approach and the new algorithm are denoted in Sect. 3.
Experimental results are drawn in Sect. 4 with a conclusion in Sect. 5.

2 Related Work

Many forest building methods have been proposed to produce more accurate
and diversified trees by distinguishing the training dataset in various ways. As
follows, we will examine several well-known algorithms.

Bagging: In Bagging [3], the dataset is randomly divided into a test set T and
a learning set L. A new learning set L′ is created randomly from the original
learning set L, containing the same number of samples. Consequently, some sam-
ples in L may be selected several times and others may not be selected at all.
This method of generating a new learning set is called bootstrap sampling. In
bagging, bootstrap sampling is used to generate number (|T |) of bootstrap sam-
ples L1, L2, L3, ...., Lr. Afterwards, a decision tree algorithm uses each bootstrap
sample Li(i = 1, 2, 3..., |T |) to build (|T |) number of trees for the forest.
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Random Subspace: The Random Subspace method [14] is also called attribute
bagging and feature bagging. It attempts to reduce the correlation between indi-
vidual weak learners in an ensemble by training them on random selection of a
subset D′ of features from the entire attribute space D. Features in D′ can be
drawn at both node level and tree level. When drawn at the tree level, features
in D′ continue to be the same for the tree, whereas when drawn at the node
level, features D′ vary from one node to another in a tree. Through any known
decision tree algorithms such as CART [5], the best attribute in D′ is calculated
and determined to be the best splitting feature for the corresponding node.

Random Feature Weights: Random Feature Weights [17] is a tree ensemble con-
struction method, where diversity is introduced into each individual tree using
a random weight from a uniform distribution associated with each attribute.
A weight stays the same for every node of a tree, while each tree acquires a
different weight. In order to determine the best splitting feature at each node,
merit values are calculated for each feature by multiplying their classification
capacities such as Gini Index [5] by their respective random weights. Finally, the
attribute with the highest excellence value is chosen as the splitting feature.

Random Forest [4] (RF): RF is considered to be among the state-of-the-art deci-
sion forest building algorithms, as it simply combines Random Subspace and Bag-
ging algorithms where, in its simplest form, features D′ are randomly selected at
the node level. Despite all the variants of decision forests algorithms,RF is themost
popular among the research community mainly because of its publicly availability
through the sci-kit learn Python library1. Moreover, [6] compared 179 classifica-
tion algorithms emerging from 17 learning families over 121 datasets where it con-
cluded that forests, and specifically random forests, tend to outperform the rest of
the classification algorithms. Those results indicate that any enhancement beyond
Random Forest will have a substantial impact on its broad application scope.

Parallel Random Forest (PRF): PRF [16] is a modification of RF to be more suit-
able for ‘big data’. A PRF algorithm is optimised using theMIC optimisation tech-
nique as a single splitting criterion. Firstly, each feature correlation capacity score
is calculated through MIC, and then, according to the level of score, the features
are divided into three groups: ‘low’, ‘medium’, and ‘high’. Features fell in the ‘low’
group are discarded, and thus a new feature subset (D′) with all the features from
the ‘medium’ and ‘high’ groups is created. For each node, the splitting feature is
chosen randomly fromD′. A similar approach but for regression problems utilises
MIC with information gain [13] as well, and it discards the low correlation features
similarly to the PRF algorithm. Interestingly, they employ the roulette method so
as to keep only the features with a high correlation capacity score.

Therefore, intending to provide an enhanced generic decision forest building
technique, this study considers satisfying two splitting criteria (MIC and Gain
Ratio, PCC and Gain Ratio) focusing on classification tasks as well as taking

1 https://scikit-learn.org.
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into consideration low correlation features as hidden patterns that may still exist.
Moreover, in contrast to the latest trend of improving decision forest algorithms
in a problem specific manner, we present two generic methods, which improves
the overall predictive accuracy.

In general, our experimental result shows that MICF and PCCF are more
balanced and accurate decision forest algorithms. In brief, we itemise the novel
contributions of both algorithms as follows:

– Proposing a weight assignment strategy that works in favour of the features
with the highest classification capacity, but it does not discard features with
lower classification capacity.

– Proposing a double metric strategy (Gain Ratio and MIC, Gain Ratio and
PCC), which determines the best feature and threshold on each node on
classification problems.

– Proposing a weight assignment strategy that helps maintain the diversity
among the individual decision trees.

3 Proposed Methods

We propose two methods that create subsets from the feature space of the whole
original dataset using correlation capacity scores(MIC and PCC), resulting in a
higher predictive accuracy. In this paper, to the best of our knowledge, it is the
first time the MIC and Gain Ratio (for MICF) and the PCC and Gain Ratio
(for PCCF) are combined as splitting criteria (impurity measure) to improve
the overall accuracy of a decision forest classifier algorithm. Next, we present
the splitting criteria and learning algorithms, including the two main functions
for MICF and PCCF methods. The other steps of the algorithms are identical
to existing decision tree building algorithms such as CART.

3.1 Splitting Criteria

Gain Ratio. The normalisation of the Information gain of an attribute against
how much entropy that attribute has. Entropy (see Eq. 1, pi is the probability
of a data point in the subset of Di of a dataset D) can be described as the
degree of uncertainty or a measure of purity, and it is bounded between 0 and 1.
The higher entropy the higher diversion in data, while our aim is to determine a
split to create a purer distribution (close to 0) of class values in the succeeding
partitions than the original dataset D.

Entropy plays an important role in estimating the Information Gain, which is
used in ID3(the preliminary Decision Tree algorithm) [21] to determine the best
features that provide as much information about a class as possible. The aim is
to decrease the level of entropy, as it begins with the root node and progresses
to the leaf nodes by computing the difference in entropy before and after the
split (see Eq. 2, where Entropyt−1 is the entropy before splitting and Entropyt
is the entropy after splitting).
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Gain Ratio normalises Information Gain of a feature based on the amount
of entropy it has (see Eq. 3). As shown in Eq. 3, when entropy is low, the Gain
Ratio will be high, and vice versa.

Entropy(P ) = −
n∑

i=1

pi log2(pi) (1)

InformationGain = Entropyt−1 − Entropyt (2)

GainRatio = Information Gain /Entropy (3)

Pearson’s Correlation Coefficient. In statistics, Pearson’s correlation coef-
ficient is used to measure the statistical relationship or correlation among vari-
ables. It is based on the covariance matrix of the data to determine the strength
of the connection between two vectors. Pearson’s correlation coefficient between
two vectors ai and aj is:

P (ai, aj) =
cov(ai, aj)√

var(ai) × var(aj)
(4)

where cov(ai,aj) is the covariance, var(ai) is the variance of ai and var(aj) is the
variance of aj .

Maximal Information Coefficient. Maximal Information Coefficient (MIC)
is a powerful approach to measuring the correlation between two features. MIC
can deal with the correlation analysis of linear, nonlinear, and potential non-
functional relationships in large datasets. The fundamental idea of MIC is that
if a specific relationship exists between two features, a grid can be drawn on the
scatter-plot to partition them. Then, it will be able to encapsulate the mutual
information of the two features according to the approximate probability den-
sity distribution in the grid. MIC is calculated based on mutual information
and the grid partition method. Given two independent features with n sam-
ples, x = {xi|i = 1..., n} and the target variable y = {yi|1, .., n}, a finite set
D = (xi, yi|i = 1, .., n) of ordered pairs can be obtained. Given a grid G, we can
partition the xi values of D into x bins and the yi values of D into y bins. MIC
is obtained according to the following equations:

MI(D,x, y) = maxMI(D|G) (5)

where MI(D,x, y) denotes the maximum mutual information of D over grids G.
D|G represents the distribution induced by the data points in D on the cells of
grid G. The characteristic matrix of D is defined by the following equation:

M(D)xy =
MI(D,x, y)
logmin{x, y} (6)
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The MIC of D with grid size less than B(n) is defined as:

MIC(D)xy = max
xy<B(n)

{M(D)xy} (7)

where B(n) is the upper limit of the mesh division xy. In general, B(n) = n0.6.
MIC is normalised into a range [0, 1]. A higher MIC value indicates a stronger
correlation between the variables/features.

First, we use the training dataset to calculate the MIC (in the case of MICF)
and PCC (in the case of PCCF) (see Table 1) between x and y. We then normalise
those values between 0 and 1, to create an interval for the features space [0, 1].
Features with stronger correlation (Linear correlation for PCCF; both linear
and nonlinear for MICF) given the target variable having more possibilities to
be selected uniformly.

When the tree grows, at each split node, we draw random uniform num-
bers between [0, 1] equivalent to the number of features. Then, we remove the
duplicated values, and we end up with a sub-sample of the training dataset.
Thereafter, we calculate the Gain Ratio of the new feature space to determine
the best split for the current node. In this step, we apply any existing decision
tree algorithm such as CART. In our study, we examine the effectiveness of this
particular method, specifically on classification problems. To better explain the
algorithms and the functions, we explain the key functions below.

3.2 Function FeaturesImportance

Let D be the training dataset with d original features. Thus, the original feature
space Ao = A1, A2, ..Ad. In this function, we use the training dataset D to
calculate whether a feature d has a positive, neutral, or negative correlation,
given the target feature either with PCC or MIC depending on the algorithm we
test (see Table 4). At this point, in the case of PCC, we also calculate its absolute
values, which range in [−1, 1]. Then, we normalise them (see Eq. 5) to be 0 to
1, so as to create an interval for the features space in the range of [0, 1] (see
Table 1). Features d with stronger correlation (linear correlation for the PCC;
linear and nonlinear for MIC) given the target variable have more possibilities
to be selected uniformly. Features Importance function returns an array with
the features intervals (see Table 1).

3.3 Function growTree

The following steps happen every time we grow the tree until the stopping cri-
teria are met. Providing the algorithm with the stopping criteria is crucial on
individual decision trees and consequently on decision forests. On the one hand,
the data are generally over-fitted if we continue to expand the tree until each
leaf node equates to the highest Gain Ratio; and on the other hand, if split-
ting is halted too soon, the error on the training data is insufficiently large, and
thus the performance suffers as a result of bias. As such, avoiding over-fitting
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and under-fitting is crucial. In our case, we deployed the maximum depth stop-
ping criterion and the numbers of labels criterion, where we check if the current
node is homogeneous. We draw random uniform numbers equal to the number
of features between 0 and 1, and we store the indexes of the d′ features intervals
they fall within (see Table 4), so we end up with an array containing less of the
original feature space with D′ ⊆ D. It is noteworthy that, at this point, we do
not allow duplicate feature indexes as it does not make any difference in the
final result. Then, we calculate the Gain Ratio of the new dataset feature space
D′ to determine the best split for the current node. This step, may apply any
existing decision tree algorithm such as CART on the reduced space dataset D′.
This particular decision tree can be used for classification based on the training
dataset and prediction based on the testing dataset, which contains unlabelled
samples. Using two splitting criteria (PCC and Gain Ratio or MIC and Gain
Ratio), we promote the features with the best predictive ability without heavily
biasing the algorithm (see Algorithm 1).

Table 1. Pearson’s correlation coefficient example

Feature ID Scores Absolute values Normalised scores Thresholds

0 –0.255 0.255 0.322 0.322

1 0.075 0.075 0.094 0.417

2 0.143 0.143 0.180 0.597

3 –0.282 0.282 0.356 0.954

4 –0.035 0.035 0.045 1.000

4 Experimental Setup and Results

This section presents the proposed methods’ experimental results in predictive
accuracy and running time. The following results were obtained on an Intel(R)
Core(TM) i7-10875H CPU @ 2.30 GHz (16 CPUs) processor, with 64 GB RAM
and 16 MB CACHE memory.

In order to demonstrate the accuracy improvement of MICF and PCCF, we
experiment on 12 widely known datasets that are publicly available through UCI
Machine Learning Repository listed in Table 2. In particular, the median average
number of records used is 354, with the lowest having 27 records and the largest
4,177. The median average number of features used is 9, with the lowest having
4 features and the largest 279.

For testing purposes, we generate 100 trees for each contending decision forest
algorithm since the number is considered to be large enough to ensure conver-
gence of the ensemble effect [2]. We apply majority voting to aggregate results for
the forests. Moreover, we test the model with 10-Fold Cross-Validation to ensure
that every observation from the original dataset has the possibility of appear-
ing in the training and test sets. We perform hyperparameter optimization for
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each dataset using Grid Search and Random Search techniques to ensure the
best possible accuracies for each case. All the prediction accuracies reported in
this paper are in percentage, and the best results are presented in bold-face. As
MICF and PCCF are designed for parallel forest algorithms, for a fair evaluation,
we compare them with other parallel forest algorithms, including Bagging (BG),
Random Subspace (RS), Random Forest (RF), and two variants of Random Fea-
tures Weights (RFW) with p = 1 and p = 2. Moreover, for consistency with RF,
CART is utilised as the tree induction algorithm, and Gini Index is employed
as the measure of classification capacity for every forest algorithm mentioned
above. Finally, both versions of RFW (P = 2 and p = 1) are applied on boot-
strap samples, as a better performance can be observed using this particular
technique [17].

Generally, an essential aim for forest algorithms is to improve the Ensemble
Accuracy (EA) [1]. As such, every single contending forest algorithm described
in this paper aims to increase EA as their principal performance metric. Metrics
such as Precision and Recall [23] are mainly and primarily used on imbalanced
datasets, therefore evaluating PCCF and MICF as general purpose forest algo-
rithms, we have not involved any imbalance dataset in our experimental evalua-
tion. Table 3 presents the results on EA for all the contending algorithms while
all datasets are taken into consideration. Results are presented in the shape of
EA Rank, where EA is the Ensemble Accuracy in percentage for the algorithm in

Algorithm 1: Features Importance and Grow tree functions in algorithmic
notation
Input: Training Dataset D with original attribute space Ao = {A1,A2,...,Ad},

number of features of the new Dataset D’ where D’features < D
features(NumFeat)

Output: A Decision Tree(T)
Function Features Importance(D):

FeaturesImportance = Calculate the features importance(MIC or
PCC) of Training Dataset D

FeaturesImportanceInterval = Create a features importance
interval from 0 to 1 such as
(F1 = 0.1, F2 = 0.3, F3 = 0.55, ..., Fn = 1)

return FeaturesImportanceInterval

Function Grow Tree(FeaturesImportanceInterval,NumFeat):
for i until stopping criteria met do

UniformDraw = draw uniform numbers between 0 and 1
FeaturesIndex = get the features index using the uniform numbers
using UniformDraw

D’ = generate the dataset using the column index using
FeaturesIndex

T = growTree using the D’
End for
return T
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comparison, and EA Rank is the Ensemble Accuracy Rank for the corresponding
algorithm to other contending algorithms according to the rank-ordering used
in Friedman Test [12]. Amongst the 7 contending algorithms, the one with the
highest EA is assigned an EA Rank of 1, the second highest as EA Rank of 2,
and so on. Hence, the lower the EA Rank, the better the EA. In the case of a
tie, we average the two or three or the number of algorithms having equal EA.
Thus, for example, if two algorithms become the worst in EA, their EA Rank is
calculated by 6+7

2 = 6.5. The last row of Table 3 shows the average EA and the
average EA Rank in parentheses.

In Table 3, we present the EA percentage of the contenting algorithms for all
12 datasets considered. From Table 3 we observe that PCCF provides the best
EA on 1 dataset with an EA Rank of 3.0, and MICF obtains the best EA on
11 datasets out of 12 with an EA Rank of 1.3. BG does not get any first place
in an EA, resulting in an EA Rank of 5.4. RS obtains the best EA on 1 dataset
with an EA Rank of 4.2. RF does not manage to get any first place in an EA
resulting in an EA Rank of 4.3. RFWp = 1 obtains higher EA on 1 dataset
with EA Rank of 4.3. Finally, RFWp = 2 does not manage to get any first place
in an EA, resulting in an EA Rank of 5.5. The last row of Table 3 shows that
MICF achieves the best overall average performance based in an EA and EA
Rank compared to all other contending algorithms.

Table 2. Datasets specifications

Dataset name Number of records Number of features

Abalone (AB) 4177 8

Arrythma (AR) 452 279

Balance scale (BS) 625 4

Dermatology (DER) 358 34

Glass identification (GI) 214 9

Ionosphere (ION) 351 34

Liver disorders (LD) 345 6

Lung cancer (LC) 27 56

Pima indians diabetes (PID) 768 8

SCADI (SCD) 206 70

Teaching assistant evaluation (TAE) 1515 5

Yeast (YST) 1484 9
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Table 3. Ensemble Accuracy (EA) in percentage with Ensemble Accuracy Rank (EA
Rank).

Dataset PCCF MICF BG RS RF RFW p=1 RFW p=2

AB 21.3 (7.0) 27.5 (1.0) 25.1 (2.5) 25.0 (4.5) 25.0 (4.5) 25.1 (2.5) 23.7 (6.0)

AR 81.2 (7.0) 82.8 (4.0) 81.6 (6.0) 83.7 (1.0) 83.0 (2.5) 82.6 (5.0) 83.0 (2.5)

BS 84.2 (1.5) 84.2 (1.5) 77.5 (6.0) 72.2 (7.0) 80.5 (5.0) 81.1 (4.0) 82.5 (3.0)

DER 96.0 (2.0) 96.7 (1.0) 88.5 (4.0) 89.0 (3.0) 87.0 (7.0) 87.5 (5.0) 87.3 (6.0)

GI 76.7 (2.0) 77.2 (1.0) 74.1 (3.5) 73.2 (5.5) 74.1(3.5) 73.2 (5.5) 72.2 (7.0)

ION 93.7 (3.0) 94.5 (1.0) 92.6 (7.0) 93.4 (5.0) 93.7 (3.0) 93.7 (3.0) 92.9 (6.0)

LD 72.1 (2.0) 73.6 (1.0) 68.7 (6.0) 69.8 (5.0) 71.5 (3.0) 71.0 (4.0) 67.3 (7.0)

LC 76.6 (2.0) 84.4 (1.0) 63.9 (7.0) 68.9 (4.5) 68.9 (4.5) 68.9 (4.5) 68.9 (4.5)

PID 76.2 (2.5) 77.9 (1.0) 75.6 (6.0) 76.2 (2.5) 75.9 (4.0) 75.6 (6.0) 75.6 (6.0)

SCD 83.7 (3.0) 84.3 (1.5) 80.0 (6.5) 82.9 (4.5) 80.0 (6.5) 84.3 (1.5) 82.9 (4.5)

TAE 60.6 (2.0) 62.4 (1.0) 53.6 (7.0) 59.5 (3.0) 56.3 (4.0) 54.3 (5.0) 54.2 (6.0)

YST 60.3 (2.0) 60.9 (1.0) 60.5 (3.0) 58.6 (5.0) 59.5 (4.0) 57.9 (6.0) 48.9 (7.0)

Average 73.9 (3.0) 75.7 (1.3) 70.1 (5.4) 71.0 (4.2) 71.4 (4.3) 71.3 (4.3) 69.9 (5.5)

In the following, we further examine the enhancement we achieved by per-
forming statistical significance tests as recommended in [7]. First, we perform
the Friedman test [11], which is a popular non-parametric test for examining var-
ious classifiers on multiple datasets. Friedman statistic is distributed according
to Eq. 8, where k is the number of algorithms, and N is the number of datasets.
As a generic rule, k > 5 and N > 10 must be hold. In Eq. 9, let rji be the rank
of the jth of k algorithms on the ith of N datasets. [15] suggests that Eq. 8 is
undesirably conservative, and it derives a better statistical measure, as shown
in Eq. 10:

x2
F =

N

nk(k + 1)

k∑

j=1

R2
j − 3n(k + 1) (8)

Rj =
1
N

∑

i

rji (9)

Ff =
(N − 1)x2

F

N(k − 1) − x2
F

(10)

With 7 algorithms and 14 datasets, Ff is distributed according to the F
distribution with 66 degrees of freedom, which is calculated using Eq. 11. The
critical value of F (6, 66) for α = 0.05 is 2.24 and our value of Ff is calculated
to be 8.7. As the critical value is lower than our Ff value, the null hypothesis is
rejected, and so we can proceed with a post-hoc test, i.e., the Bonferroni-Dunn
test [10] for detecting pairwise differences of EA Ranks between the controlled
classifiers (MICF and PCCF) and the rest of the contending classifiers.
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FD = (k − 1)(N − 1) (11)

For the Bonferonni-Dunn test, we calculate the critical difference using Eq. 12
to compare our first novel algorithm (MICF) with the rest of the contending algo-
rithms. In Eq. 12, qa represents the bold number in the last row of Table 3 in
brackets (EA Rank). The Critical Difference(CD) is calculated to be 1.14. At this
point we observe that CD remains lower than the pairwise difference of EA Ranks
between the classifier MICF and the other contending classifiers ( MICF vs BG :
4.1, MICF vs RS : 2.9, MICF vs RF : 3.0, MICF vs RFWp = 1 :
3.0, MICF vs RFWp = 3 : 4.2). This indicates that MICF outperforms the rest
classifiers in terms or EA, in a statistically significant manner.

Now, we repeat the same test for our second novel algorithm (PCCF) with the
rest of the contending classifiers. The critical difference is calculated to be 1 and as
before we observe that CD remains lower than the pairwise difference of EARanks
between classifier PCCF and the other contending algorithms ( PCCF vs BG :
2.4, PCCF vs RS : 1.2, PCCF vs RF : 1.3, PCCF vs RFWp = 1 :
1.3, PCCF vs RFWp = 3 : 2.5). This indicates that the performance improve-
ment in PCCF in terms of EA is statistically significant.

CD = qa

√
k(k + 1)

6N
(12)

Table 4 contains correlation scores, which indicate the main differences
between our two novel algorithms - MICF and PCCF. The results suggest that
MIC can identify more accurately the correlation between the features and the
target, as well as take into consideration the uncertainty, which results in a more
accurate algorithm. Both MICF and PCCF algorithms outperform their com-
petitors by achieving 4.4 and 2.6% more accurate results, respectively, compared
with the third highest accurate algorithm, RF.

Table 4. Comparison between MIC and PCC scores.(left-PCC, right-MIC)

Feature space AB TAE YST GI LD BS

1 0.009 0.071 0.323 0.079 0.071 0.208 0.056 0.132 0.166 0.081 0.242 0.242

2 0.155 0.204 0.417 0.275 0.191 0.389 0.227 0.252 0.344 0.330 0.485 0.485

3 0.306 0.341 0.598 0.559 0.221 0.515 0.481 0.428 0.408 0.505 0.742 0.742

4 0.452 0.471 0.955 0.647 0.357 0.764 0.685 0.552 0.694 0.642 1.000 1.000

5 0.593 0.604 1.000 1.000 0.499 0.857 0.736 0.626 0.960 0.887

6 0.704 0.723 0.570 0.871 0.740 0.741 1.000 1.000

7 0.836 0.855 0.174 0.903 0.740 0.825

8 1.000 1.000 0.724 0.928 0.936 0.961

9 1.000 1.000 1.000 1.000
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5 Conclusion

In this paper, we have proposed two novel decision forest building algorithms
- Maximal Information Coefficient Forest (MICF ) and Pearson’s Correlation
Coefficient Forest (PCCF ). They combine Gain Ratio with PCC and MIC,
which are used to determine the best feature on each splitting node. The larger
the correlation score (either MIC or PCC), the greater the possibility of ending
up on the newly created dataset D′ at each splitting node. To the best of our
knowledge, our work of combining Gain Ratio with MIC or PCC in classification
problems is the first of its kind and can help improve the accuracy in classifi-
cation problems significantly. The experimental results have shown that MICF
performs significantly better in Ensemble Accuracy than some highly esteemed
existing algorithms, including Bagging, Random Subspace, Random Forest, Ran-
dom Feature Weight, and the newly proposed PCCF algorithm. Moreover, the
generation of individual decision trees in both MICF and PCCF is in no way
dependent on any previous tree(s) and, therefore, can be generated in parallel.
Moreover, considering the consistent performance of both MICF and PCCF ,
makes them a great fit within the big data context and thus enabling it to be
used by non-technical individuals.

For future work, we aim to test our algorithms against imbalanced datasets
and compare them with probabilistic trees, which are known to capture the
uncertainty in the data effectively.
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