Skip to main content

On Forecasting Project Activity Durations with Neural Networks

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1600))

  • 994 Accesses

Abstract

Accurately forecasting project end dates is an incredibly valuable and equally challenging task. In recent years it has gained added attention from the machine learning community. However, state of the art methods both in academia and in industry still rely on expert opinions and Monte-Carlo simulations. In this paper, we formulate the problem of activity duration forecasting as a classification task using a domain specific binning strategy. Our experiments on a data set of real construction projects suggest that our proposed method offers several orders of magnitude improvement over more traditional approaches where activity duration forecasting is treated as a regression task. Our results suggest that posing the forecasting problem as a classification task with carefully designed classes is crucial for high quality forecasts both at an activity and a project levels.

Supported by nPlan.

J. Gante—For contributions made while employed at nPlan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    2.977 million of 5.693 million (or \(52.3\%\)) activities in our database have completed exactly on time.

  2. 2.

    https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization.

References

  1. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018)

  2. Bhandari, S., Molenaar, K.R.: Using debiasing strategies to manage cognitive biases in construction risk management: recommendations for practice and future research. Pract. Period. Struct. Design Constr. 25(4), 04020033 (2020)

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  4. Culakova, N., et al.: How to calibrate your neural network classifier: getting true probabilities from a classification model. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020)

    Google Scholar 

  5. Malcolm, D.G., Roseboom, J.H., Clark, C.E., Fazar, W.: Application of a technique for research and development program evaluation. Oper. Res. 7(5), 646–669 (1959)

    Article  Google Scholar 

  6. Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: modelling flexible constraints vs. coping with incomplete knowledge. Eur. J. Oper. Res. 147(2), 231–252 (2003)

    Article  MathSciNet  Google Scholar 

  7. Egwim, C.N., et al.: Applied artificial intelligence for predicting construction projects delay. Mach. Learn. Appl. 6, 100166 (2021)

    Google Scholar 

  8. Fazar, W.: Program evaluation and review technique. Am. Stat. 13(2), 10 (1959)

    Google Scholar 

  9. Fiori, C., Kovaka, M.: Defining megaprojects: learning from construction at the edge of experience. In: Construction Research Congress 2005: Broadening Perspectives (2005)

    Google Scholar 

  10. Flyvbjerg, B., Bruzelius, N., Rothengatter, W.: An Anatomy of Ambition: Megaprojects and Risk. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  11. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning. PMLR (2016)

    Google Scholar 

  12. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gneiting, T., Katzfuss, M.: Probabilistic forecasting. Ann. Rev. Stat. Appl. 1, 125–151 (2014)

    Article  Google Scholar 

  14. Guo, C., et al.: On calibration of modern neural networks. In: International Conference on Machine Learning. PMLR (2017)

    Google Scholar 

  15. Guo, X., et al.: On the class imbalance problem. In: 2008 Fourth International Conference on Natural Computation, vol. 4. IEEE (2008)

    Google Scholar 

  16. Hahn, E.D.: Mixture densities for project management activity times: a robust approach to PERT. Eur. J. Oper. Res. 188(2), 450–459 (2008)

    Article  Google Scholar 

  17. Hong, Y., et al.: Determining construction method patterns to automate and optimise scheduling-a graph-based approach. In: European Conference on Computing in Construction (2021). https://doi.org/10.17863/CAM.Vol.68385

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. PMLR (2015)

    Google Scholar 

  19. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6, 429–449 (2002)

    Article  Google Scholar 

  20. Jiao, X., et al.: Tinybert: distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351 (2019)

  21. Jolliffe, I.T., Stephenson, D.B. (eds.): Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley & Sons, Hoboken (2012)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Mahdi, M.N., et al.: Software project management using machine learning technique-a review. Appl. Sci. 11(11), 5183 (2021)

    Article  Google Scholar 

  25. Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Farid Hama Ali, H., Ismail Abdullah, A., Kameran Al-Salihi, N.: Forecasting tunnel geology, construction time and costs using machine learning methods. Neural Comput. Appl. 33(1), 321–348 (2020). https://doi.org/10.1007/s00521-020-05006-2

    Article  Google Scholar 

  26. Mahmoodzadeh, A., et al.: Predicting construction time and cost of tunnels using Markov chain model considering opinions of experts. Tunnel. Undergr. Space Technol. 116, 104109 (2021)

    Google Scholar 

  27. Maravas, A., Pantouvakis, J.-P.: Project cash flow analysis in the presence of uncertainty in activity duration and cost. Int. J. Proj. Manag. 30(3), 374–384 (2012)

    Article  Google Scholar 

  28. Mosca, A., Magoulas, G.D.: Boosted residual networks. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds.) EANN 2017. CCIS, vol. 744, pp. 137–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65172-9_12

    Chapter  Google Scholar 

  29. Petropoulos, F., et al.: Forecasting: theory and practice. Int. J. Forecast. (2022)

    Google Scholar 

  30. Popescu, M.-C., et al.: Multilayer perceptron and neural networks. WSEAS Trans. Circ. Syst. 8(7), 579–588 (2009)

    Google Scholar 

  31. Raftery, A.E.: Use and communication of probabilistic forecasts. Stat. Anal. Data Mining ASA Data Sci. J. 9(6), 397–410 (2016)

    Article  MathSciNet  Google Scholar 

  32. Van Slyke, R.M.: Letter to the editor-monte carlo methods and the PERT problem. Oper. Res. 11(5), 839–860 (1963)

    Article  Google Scholar 

  33. Sanderson, J.: Risk, uncertainty and governance in megaprojects: a critical discussion of alternative explanations. Int. J. Proj. Manag. 30(4), 432–443 (2012)

    Article  Google Scholar 

  34. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable, vol. 2. Random house (2)007

    Google Scholar 

  36. Wu, Z., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  37. Zheng, H., et al.: Improving deep neural networks using softplus units. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahan Hovhannisyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zachares, P., Hovhannisyan, V., Ledezma, C., Gante, J., Mosca, A. (2022). On Forecasting Project Activity Durations with Neural Networks. In: Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2022. Communications in Computer and Information Science, vol 1600. Springer, Cham. https://doi.org/10.1007/978-3-031-08223-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08223-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08222-1

  • Online ISBN: 978-3-031-08223-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics