Skip to main content

Transfer Learning for the Classification of Small-Cell and Non-small-Cell Lung Cancer

  • Conference paper
  • First Online:
Intelligent Systems and Pattern Recognition (ISPR 2022)

Abstract

Lung cancer is a disease caused by abnormal lung cell growth. The number of people of all ages and sexes with lung tumors is constantly increasing. Classical classification of lung tumors can be sometimes misleading and time-consuming. Consequently, automated diagnosis is becoming a necessity to avoid the occurrence of errors and increase the survival rate of patients with lung tumors. However, deep learning and transfer learning are effective tools for the early detection and classification of lung tumors on the basis of anatomopathological slides of the lung. This work presents a Deep learning/Transfer learning implementation for lung tumor classification using a six-class database (LUAD, LUSC, SCLC, PTB, OP, NL). In order to reach the average accuracy of 98.9%, the implementation was trained using three convolutional neural network models: VGG19, ResNet50, and InceptionV3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. (2021). https://doi.org/10.3322/caac.21660

  2. Barlesi, F., Mazieres, J., Merlio, J.-P., Debieuvre, D., Mosser, J., Lena, H., et al.: Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 387(10026), 1415–1426 (2016)

    Article  Google Scholar 

  3. Travis, W.D., Brambilla, E., Nicholson, A.G., Yatabe, Y., Austin, J.H.M., Beasley, M.B.: The 2015 World Health Organization classification of lung tumors. J. Thorac. Oncol. 10(9), 1243–1260 (2015)

    Article  Google Scholar 

  4. Travis, W.D., Colby, T.V., Corrin, B., Shimosato, Y., Brambilla, E., Sobbin, L.H., et al.: Histological Typing of Lung and Pleural Tumours. Springer, Berlin (1999)

    Book  Google Scholar 

  5. Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., et al.: QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017)

    Article  Google Scholar 

  6. Senaras, C., Niazi, M.K.K., Lozanski, G., Gurcan, M.N.: DeepFocus: detection of out-of-focus regions in whole slide digital images using deep learning. PLoS ONE 13, e205387 (2018)

    Google Scholar 

  7. Wang, S., Wang, T., Yang, L., Yang, D.M., Fujimoto, J., Yi, F., et al.: ConvPath: a software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network. EBioMed. 50, 103–110 (2019)

    Article  Google Scholar 

  8. Janowczyk, A., Zuo, R., Gilmore, H., Feldman, M., Madabhushi, A.: Histoqc: an open-source quality control tool for digital pathology slides. JCO Clin. Cancer Inform. 3, 1–7 (2019)

    Article  Google Scholar 

  9. Zheng, Y., Jiang, Z., Zhang, H., Xie, F., Shi, J., Xue, C.: Adaptive color deconvolution for histological WSI normalization. Comput. Methods Prog. Biomed. 170, 107–120 (2019)

    Article  Google Scholar 

  10. Coudray, N., Ocampo, P.S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018)

    Article  Google Scholar 

  11. Yu, K.H., Wang, F., Berry, G.J., Ré, C., Altman, R.B., Snyder, M., et al.: Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. J. Am. Med. Inform. Assoc. 27, 757–769 (2020)

    Article  Google Scholar 

  12. Gertych, A., Swiderska-Chadaj, Z., Ma, Z., Ing, N., Markiewicz, T., Cierniak, S., et al.: Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep. 9, 1483 (2019)

    Article  Google Scholar 

  13. Wei, J.W., Tafe, L.J., Linnik, Y.A., Vaickus, L.J., Tomita, N., Hassanpour, S.: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 9, 3358 (2019)

    Article  Google Scholar 

  14. Kriegsmann, M., Haag, C., Weis, C.A., Steinbuss, G., Warth, A., Zgorzelski, C., et al.: Deep learning for the classification of small-cell and non-small-cell lung cancer. Cancers 12, 1604 (2020)

    Article  Google Scholar 

  15. Yang, H., Chen, L., Cheng, Z., et al.: Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study. BMC Med. 19, 80 (2021)

    Article  Google Scholar 

  16. Travis, W.D.: The 2015 WHO classification of lung tumors. Pathologe 35(2), 188 (2014). https://doi.org/10.1007/s00292-014-1974-3

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  19. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Gasmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gasmi, M., Derdour, M., Gahmous, A. (2022). Transfer Learning for the Classification of Small-Cell and Non-small-Cell Lung Cancer. In: Bennour, A., Ensari, T., Kessentini, Y., Eom, S. (eds) Intelligent Systems and Pattern Recognition. ISPR 2022. Communications in Computer and Information Science, vol 1589. Springer, Cham. https://doi.org/10.1007/978-3-031-08277-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08277-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08276-4

  • Online ISBN: 978-3-031-08277-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics