Skip to main content

HEDL-IDS: A Hybrid Ensemble Deep Learning Approach for Cyber Intrusion Detection

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2022)

Abstract

The continuously increasing number of activities processed via the internet, often leaves the user vulnerable to cyber-attacks. The goal of the scientific community is to deploy innovative approaches and methodologies, capable to offer protection from potential cyber threats. This research effort aims to contribute to networks’ security by introducing the Hybrid Ensemble Deep Learning (HEDL) Intrusion Detection System (IDS) that successfully detects nine serious cyber-attacks. Its architecture comprises of three Deep Neural Networks (DNN), three Convolutional Neural Networks (CNN) and 3 Recurrent Neural Networks (RNN) using Long-Short Term Memory (LSTM) layers, running in parallel. The HEDL-IDS was successfully tested against the UNSW-NB15 dataset, achieving an overall accuracy of 98.35% and 96.25% in the training and testing phases respectively. The performance of the proposed model was evaluated by calculating Accuracy, Sensitivity, Specificity, Precision and F-1 Score. The values of all above indices were higher than 0.92, indicating the accurate performance of the developed model. The HEDL-IDS was compared with 20 robust Machine Learning Classification algorithms, sealing its reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alqahtani, H., Sarker, I.H., Kalim, A., Hossain, S.M.M., Ikhlaq, S., Hossain, S.: Cyber intrusion detection using machine learning classification techniques. In: Chaubey, N., Parikh, S., Amin, K. (eds.) COMS2 2020. CCIS, vol. 1235, pp. 121–131. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6648-6_10

    Chapter  Google Scholar 

  2. Sarker, I.H., Kayes, A.S.M., Badsha, S., Alqahtani, H., Watters, P., Ng, A.: Cybersecurity data science: an overview from machine learning perspective. J. Big Data 7(1), 1–29 (2020). https://doi.org/10.1186/s40537-020-00318-5

    Article  Google Scholar 

  3. Mohammadi, S., Mirvaziri, H., Ghazizadeh-Ahsaee, M., Karimipour, H.: Cyber intrusion detection by combined feature selection algorithm. J. Inf. Secur. Appl. 44, 80–88 (2019)

    Google Scholar 

  4. Tavallaee, M., Stakhanova, N., Ghorbani, A.A.: Toward credible evaluation of anomaly-based intrusion-detection methods. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(5), 516–524 (2010)

    Article  Google Scholar 

  5. Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierarchical intrusion detection system based on decision tree and rules-based models. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 228–233. IEEE, May 2019

    Google Scholar 

  6. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2015)

    Article  Google Scholar 

  7. Kabir, E., Hu, J., Wang, H., Zhuo, G.: A novel statistical technique for intrusion detection systems. Futur. Gener. Comput. Syst. 79, 303–318 (2018)

    Article  Google Scholar 

  8. Hwang, K., Cai, M., Chen, Y., Qin, M.: Hybrid intrusion detection with weighted signature generation over anomalous internet episodes. IEEE Trans. Dependable Secure Comput. 4(1), 41–55 (2007)

    Article  Google Scholar 

  9. The UNSW-NB15 Dataset. https://research.unsw.edu.au/projects/unsw-nb15-dataset

  10. Li, Y., Xia, J., Zhang, S., Yan, J., Ai, X., Dai, K.: An efficient intrusion detection system based on support vector machines and gradually feature removal method. Expert Syst. Appl. 39(1), 424–430 (2012)

    Article  Google Scholar 

  11. Koc, L., Mazzuchi, T.A., Sarkani, S.: A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier. Expert Syst. Appl. 39(18), 13492–13500 (2012)

    Article  Google Scholar 

  12. Shapoorifard, H., Shamsinejad, P.: Intrusion detection using a novel hybrid method incorporating an improved KNN. Int. J. Comput. Appl 173(1), 5–9 (2017)

    Google Scholar 

  13. Malik, A.J., Khan, F.A.: A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection. Cluster Comput. 21(1), 667–680 (2018)

    Article  Google Scholar 

  14. Sarker, I.H., Abushark, Y.B., Alsolami, F., Khan, A.I.: Intrudtree: a machine learning based cyber security intrusion detection model. Symmetry 12(5), 754 (2020)

    Article  Google Scholar 

  15. Kim, J., Kim, J., Thu, H.L.T., Kim, H.: Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 International Conference on Platform Technology and Service (PlatCon), pp. 1–5. IEEE, February 2016

    Google Scholar 

  16. Zhang, Z., Zhou, X., Zhang, X., Wang, L., Wang, P.: A model based on convolutional neural network for online transaction fraud detection. Secur. Commun. Netw. 2018 (2018)

    Google Scholar 

  17. Basumallik, S., Ma, R., Eftekharnejad, S.: Packet-data anomaly detection in PMU-based state estimator using convolutional neural network. Int. J. Electr. Power Energy Syst. 107, 690–702 (2019)

    Article  Google Scholar 

  18. Thamilarasu, G., Chawla, S.: Towards deep-learning-driven intrusion detection for the internet of things. Sensors 19(9), 1977 (2019)

    Article  Google Scholar 

  19. Khan, F.A., Gumaei, A., Derhab, A., Hussain, A.: A novel two-stage deep learning model for efficient network intrusion detection. IEEE Access 7, 30373–30385 (2019)

    Article  Google Scholar 

  20. Demertzis, K., Iliadis, L., Tziritas, N., Kikiras, P.: Anomaly detection via blockchained deep learning smart contracts in industry 4.0. Neural Comput. Appl. 32(23), 17361–17378 (2020). https://doi.org/10.1007/s00521-020-05189-8

    Article  Google Scholar 

  21. Psathas, A.P., Iliadis, L., Papaleonidas, A., Bountas, D.: A hybrid deep learning ensemble for cyber intrusion detection. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds.) EANN 2021. PINNS, vol. 3, pp. 27–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80568-5_3

    Chapter  Google Scholar 

  22. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE, November 2015

    Google Scholar 

  23. The IXIA PerfectStorm tool. http://www.ixiacom.com/products/perfectstorm

  24. CVE. https://cve.mitre.org/

  25. Yeung, D.S., Li, J.C., Ng, W.W., Chan, P.P.: MLPNN training via a multiobjective optimization of training error and stochastic sensitivity. IEEE Trans. Neural Netw. Learn. Syst. 27(5), 978–992 (2015)

    Article  MathSciNet  Google Scholar 

  26. Baek, J., Choi, Y.: Deep neural network for predicting ore production by truck-haulage systems in open-pit mines. Appl. Sci. 10(5), 1657 (2020)

    Article  Google Scholar 

  27. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  28. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  29. Martin, E., Cundy, C.: Parallelizing linear recurrent neural nets over sequence length. arXiv preprint arXiv:1709.04057 (2017)

  30. Mahdavifar, S., Ghorbani, A.A.: Application of deep learning to cybersecurity: a survey. Neurocomputing 347, 149–176 (2019)

    Article  Google Scholar 

  31. Le, X.H., Ho, H.V., Lee, G., Jung, S.: Application of long short-term memory (LSTM) neural network for flood forecasting. Water 11(7), 1387 (2019)

    Article  Google Scholar 

  32. Ketkar, N.: Introduction to keras. In: Deep Learning with Python, pp. 97–111. Apress, Berkeley (2017)

    Google Scholar 

  33. Dillon, J.V., et al.: Tensorflow distributions. arXiv preprint arXiv:1711.10604 (2017)

  34. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Panagiotis Psathas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Psathas, A.P., Iliadis, L., Papaleonidas, A., Bountas, D. (2022). HEDL-IDS: A Hybrid Ensemble Deep Learning Approach for Cyber Intrusion Detection. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-08333-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08333-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08332-7

  • Online ISBN: 978-3-031-08333-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics