Skip to main content

Quantum Approach for Vertex Separator Problem in Directed Graphs

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 646))

  • 1181 Accesses

Abstract

The Vertex Separator Problem of a directed graph consists in finding all combinations of vertices which can disconnect the source and the terminal of the graph, these combinations are minimal if they contain only the minimal number of vertices. In this paper, we introduce a new quantum algorithm based on a movement strategy to find these separators in a quantum superposition with linear complexity. Our algorithm has been tested on small directed graphs using a real Quantum Computer made by IBM .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MathSciNet  Google Scholar 

  2. Apers, S., Lee, T.: Quantum complexity of minimum cut. arXiv preprint arXiv:2011.09823 (2020)

  3. Ashcraft, C., Liu, J.W.H.: A partition improvement algorithm for generalized nested dissection. Boeing Computer Services, Seattle, WA, Technical report, BCSTECH-94-020 (1994)

    Google Scholar 

  4. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42(3), 153–159 (1992)

    Article  MathSciNet  Google Scholar 

  5. Cui, S.X., Freedman, M.H., Sattath, O., Stong, R., Minton, G.: Quantum max-flow/min-cut. J. Math. Phys. 57(6), 062206 (2016)

    Article  MathSciNet  Google Scholar 

  6. Davis, T.A., Hager, W.W., Kolodziej, S.P., Yeralan, S.N.: Algorithm 1003: mongoose, a graph coarsening and partitioning library. ACM Trans. Math. Softw. 46(1), 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  7. Dörn, S.: Quantum algorithms for graph traversals and related problems. In: Proceedings of CIE, vol. 7, pp. 123–131. Citeseer (2007)

    Google Scholar 

  8. Eldredge, Z., et al.: Entanglement bounds on the performance of quantum computing architectures. Phys. Rev. Res. 2(3), 033316 (2020)

    Article  Google Scholar 

  9. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th Design Automation Conference, pp. 175–181. IEEE (1982)

    Google Scholar 

  10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  11. Hager, W.W., Hungerford, J.T.: Continuous quadratic programming formulations of optimization problems on graphs. Eur. J. Oper. Res. 240(2), 328–337 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hager, W.W., Hungerford, J.T., Safro, I.: A multilevel bilinear programming algorithm for the vertex separator problem. Comput. Optim. Appl. 69(1), 189–223 (2017). https://doi.org/10.1007/s10589-017-9945-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Hendrickson, B., Rothberg, E.: Improving the run time and quality of nested dissection ordering. SIAM J. Sci. Comput. 20(2), 468–489 (1998)

    Article  MathSciNet  Google Scholar 

  14. Jeffery, S., Kimmel, S.: Quantum algorithms for graph connectivity and formula evaluation. Quantum 1, 26 (2017)

    Article  Google Scholar 

  15. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  Google Scholar 

  16. Kloks, T., Kratsch, D.: Listing all minimal separators of a graph. SIAM J. Comput. 27(3), 605–613 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kolodziej, S., Davis, T.: Vertex separators with mixed-integer linear optimization. In: 17th SIAM Conference on Parallel Processing for Scientific Computing (2016)

    Google Scholar 

  18. Kolodziej, S.P., Davis, T.A.: Generalized gains for hybrid vertex separator algorithms. In: 2020 Proceedings of the SIAM Workshop on Combinatorial Scientific Computing, pp. 96–105. SIAM (2020)

    Google Scholar 

  19. Kolodziej, S.P.: Computational optimization techniques for graph partitioning. Ph.D. thesis (2019)

    Google Scholar 

  20. Bellac, M.L.: Introduction à l’information quantique. Belin (2005)

    Google Scholar 

  21. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  Google Scholar 

  22. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MathSciNet  Google Scholar 

  23. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    Article  MathSciNet  Google Scholar 

  24. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

    Google Scholar 

  25. Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Wisnieff, R.: Leveraging secondary storage to simulate deep 54-qubit sycamore circuits. arXiv preprint arXiv:1910.09534 (2019)

  26. Preskill, J.: Quantum computing and the entanglement frontier. arXiv preprint arXiv:1203.5813 (2012)

  27. Shimizu, K., Mori, R.: Exponential-time quantum algorithms for graph coloring problems. In: Kohayakawa, Y., Miyazawa, F.K. (eds.) LATIN 2021. LNCS, vol. 12118, pp. 387–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61792-9_31

    Chapter  Google Scholar 

  28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  29. Zhong, H.-S., et al.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was partially funded by the European project NExt ApplicationS of Quantum Computing (NEASQC), supported by the Horizon 2020-FETFLAG (Grant Agreement 951821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Zaiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaiou, A., Bennani, Y., Hibti, M., Matei, B. (2022). Quantum Approach for Vertex Separator Problem in Directed Graphs. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-08333-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08333-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08332-7

  • Online ISBN: 978-3-031-08333-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics