Skip to main content

An Automated 2D U-Net Segmentation Method for the Identification of Cancer Brain Metastases Using MRI Images

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops (AIAI 2022)

Abstract

In this study, we propose an automated system for the segmentation of cancer brain metastases (CBM) using MRI images. The goal is the correlation with regards to the primary cancer site. The segmentation of CBM is a challenging task due to their wide range in terms of number, shape, size and location in the brain. We experimented with the training of a modified U-Net convolutional neural network (CNN) using N = 3474 brain image slices for training, Nv = 579 for validation and NT = 579 for testing from the public dataset BrainMetShare. The proposed model was evaluated on the testing data (NT), on a lesion-cross section basis with areas from 2.8 to 1225.7 mm2 and yielded a mean Sensitivity (SE) 0.70 ± 0.30, Specificity (SP) 0.77 ± 0.26 and Dice similarity coefficient (DSC) of 0.73 ± 0.29 across the entire dataset. The present results show the good agreement of the proposed method with the ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achrol, A.S., Rennert, R.C., Anders, C., Soffietti, R., et al.: Brain metastases. Nat. Rev. Dis. Primers. 5(1), 1–26 (2019)

    Article  Google Scholar 

  2. Mitchell, D., Kwon, H.J., Kubica, P.A., Huff, W.X., et al.: Brain metastases: an update on multi-disciplinary approach of clinical management. Neurochirurgie 68(1), 69–85 (2021)

    Article  Google Scholar 

  3. Tzardis, V., Kyriacou, E., Loizou, C., Constantinidou, A.: A review on breast cancer brain metastasis: automated MRI image analysis for the prediction of primary cancer using radiomics. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds.) CAIP 2021. LNCS, vol. 13052, pp. 245–255. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89128-2_24

    Chapter  Google Scholar 

  4. Liu, Y., Stojadinovic, S., Hrycushko, B., Wardak, Z., et al.: A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE 12(10), e0185844 (2017)

    Article  Google Scholar 

  5. Charron, O., Lallement, A., Jarnet, D., Noblet, V., et al.: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput. Biol. Med. 95, 43–54 (2018)

    Article  Google Scholar 

  6. Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  7. Bousabarah, K., Ruge, M., Brand, J.-S., Hoevels, M., et al.: Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Radiat. Oncol. 15(1), 1–9 (2020)

    Article  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Xue, J., Wang, B., Ming, Y., Liu, X., et al.: Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro. Oncol. 22(4), 505–514 (2020)

    Article  Google Scholar 

  10. Zhou, Z., Sanders, J.W., Johnson, J.M., Gule-Monroe, M., et al.: MetNet: computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging. Radiother. Oncol. 153, 189–196 (2020)

    Article  Google Scholar 

  11. Grøvik, E., Yi, D., Iv, M., Tong, E.A., et al.: Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study. NPJ Digit. Med. 4(1), 1–7 (2021)

    Article  Google Scholar 

  12. Yi, D., Grøvik, E., Iv, M., Tong, E., et al.: MRI pulse sequence integration for deep-learning based brain metastasis segmentation. Med. Phys. 48(10), 6020–6035 (2019)

    Article  Google Scholar 

  13. Kniep, H.C., Madesta, F., Schneider, T., Hanning, U., et al.: Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290(2), 479–487 (2019)

    Article  Google Scholar 

  14. Ortiz-Ramón, R., Larroza, A., Ruiz-España, S., Arana, E., Moratal, D.: Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur. Radiol. 28(11), 4514–4523 (2018). https://doi.org/10.1007/s00330-018-5463-6

    Article  Google Scholar 

  15. Béresová, M., Larroza, A., Arana, E., Varga, J., Balkay, L., Moratal, D.: 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution. Magn. Reson. Mater. Phys., Biol. Med. 31(2), 285–294 (2017). https://doi.org/10.1007/s10334-017-0653-9

    Article  Google Scholar 

  16. Georgiou, A., Loizou, C., Nicolaou, A., Pantzaris, M., Pattichis, C.: An adaptive semi-automated integrated system for multiple sclerosis lesion segmentation in longitudinal MRI scans based on a convolutional neural network. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds.) CAIP 2021. LNCS, vol. 13052, pp. 256–265. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89128-2_25

    Chapter  Google Scholar 

  17. Bhalodiya, J.M., Lim Choi Keung, S.N., Arvanitis, T.N.: Magnetic resonance image-based brain tumour segmentation methods: a systematic review. Digit. Health 8, 20552076221074120 (2022)

    Google Scholar 

  18. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.: No new-net. In: Crimi, Alessandro, Bakas, Spyridon, Kuijf, Hugo, Keyvan, Farahani, Reyes, Mauricio, van Walsum, Theo (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  19. Loizou, C.P., Pantzaris, M., Pattichis, C.S.: Normal appearing brain white matter changes in relapsing multiple sclerosis: texture image and classification analysis in serial MRI scans. Magn. Reson. Imaging. 73, 192–202 (2020)

    Article  Google Scholar 

  20. BrainMetShare. https://aimi.stanford.edu/brainmetshare, Accessed 04 Mar 2022

  21. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.: TensorFlow: large-scale machine learn-ing on heterogeneous systems (2015). https://www.tensorflow.org

  22. Chollet, F., et al.: Keras (2015). https://keras.io, Accessed 04 Mar 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vangelis Tzardis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tzardis, V., Kyriacou, E., Loizou, C.P., Constantinidou, A. (2022). An Automated 2D U-Net Segmentation Method for the Identification of Cancer Brain Metastases Using MRI Images. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08341-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08340-2

  • Online ISBN: 978-3-031-08341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics