Abstract
In this study, we propose an automated system for the segmentation of cancer brain metastases (CBM) using MRI images. The goal is the correlation with regards to the primary cancer site. The segmentation of CBM is a challenging task due to their wide range in terms of number, shape, size and location in the brain. We experimented with the training of a modified U-Net convolutional neural network (CNN) using N = 3474 brain image slices for training, Nv = 579 for validation and NT = 579 for testing from the public dataset BrainMetShare. The proposed model was evaluated on the testing data (NT), on a lesion-cross section basis with areas from 2.8 to 1225.7 mm2 and yielded a mean Sensitivity (SE) 0.70 ± 0.30, Specificity (SP) 0.77 ± 0.26 and Dice similarity coefficient (DSC) of 0.73 ± 0.29 across the entire dataset. The present results show the good agreement of the proposed method with the ground truth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achrol, A.S., Rennert, R.C., Anders, C., Soffietti, R., et al.: Brain metastases. Nat. Rev. Dis. Primers. 5(1), 1–26 (2019)
Mitchell, D., Kwon, H.J., Kubica, P.A., Huff, W.X., et al.: Brain metastases: an update on multi-disciplinary approach of clinical management. Neurochirurgie 68(1), 69–85 (2021)
Tzardis, V., Kyriacou, E., Loizou, C., Constantinidou, A.: A review on breast cancer brain metastasis: automated MRI image analysis for the prediction of primary cancer using radiomics. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds.) CAIP 2021. LNCS, vol. 13052, pp. 245–255. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89128-2_24
Liu, Y., Stojadinovic, S., Hrycushko, B., Wardak, Z., et al.: A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE 12(10), e0185844 (2017)
Charron, O., Lallement, A., Jarnet, D., Noblet, V., et al.: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput. Biol. Med. 95, 43–54 (2018)
Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
Bousabarah, K., Ruge, M., Brand, J.-S., Hoevels, M., et al.: Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Radiat. Oncol. 15(1), 1–9 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Xue, J., Wang, B., Ming, Y., Liu, X., et al.: Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro. Oncol. 22(4), 505–514 (2020)
Zhou, Z., Sanders, J.W., Johnson, J.M., Gule-Monroe, M., et al.: MetNet: computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging. Radiother. Oncol. 153, 189–196 (2020)
Grøvik, E., Yi, D., Iv, M., Tong, E.A., et al.: Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study. NPJ Digit. Med. 4(1), 1–7 (2021)
Yi, D., Grøvik, E., Iv, M., Tong, E., et al.: MRI pulse sequence integration for deep-learning based brain metastasis segmentation. Med. Phys. 48(10), 6020–6035 (2019)
Kniep, H.C., Madesta, F., Schneider, T., Hanning, U., et al.: Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290(2), 479–487 (2019)
Ortiz-Ramón, R., Larroza, A., Ruiz-España, S., Arana, E., Moratal, D.: Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur. Radiol. 28(11), 4514–4523 (2018). https://doi.org/10.1007/s00330-018-5463-6
Béresová, M., Larroza, A., Arana, E., Varga, J., Balkay, L., Moratal, D.: 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution. Magn. Reson. Mater. Phys., Biol. Med. 31(2), 285–294 (2017). https://doi.org/10.1007/s10334-017-0653-9
Georgiou, A., Loizou, C., Nicolaou, A., Pantzaris, M., Pattichis, C.: An adaptive semi-automated integrated system for multiple sclerosis lesion segmentation in longitudinal MRI scans based on a convolutional neural network. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds.) CAIP 2021. LNCS, vol. 13052, pp. 256–265. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89128-2_25
Bhalodiya, J.M., Lim Choi Keung, S.N., Arvanitis, T.N.: Magnetic resonance image-based brain tumour segmentation methods: a systematic review. Digit. Health 8, 20552076221074120 (2022)
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.: No new-net. In: Crimi, Alessandro, Bakas, Spyridon, Kuijf, Hugo, Keyvan, Farahani, Reyes, Mauricio, van Walsum, Theo (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21
Loizou, C.P., Pantzaris, M., Pattichis, C.S.: Normal appearing brain white matter changes in relapsing multiple sclerosis: texture image and classification analysis in serial MRI scans. Magn. Reson. Imaging. 73, 192–202 (2020)
BrainMetShare. https://aimi.stanford.edu/brainmetshare, Accessed 04 Mar 2022
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.: TensorFlow: large-scale machine learn-ing on heterogeneous systems (2015). https://www.tensorflow.org
Chollet, F., et al.: Keras (2015). https://keras.io, Accessed 04 Mar 2022
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Tzardis, V., Kyriacou, E., Loizou, C.P., Constantinidou, A. (2022). An Automated 2D U-Net Segmentation Method for the Identification of Cancer Brain Metastases Using MRI Images. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-08341-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08340-2
Online ISBN: 978-3-031-08341-9
eBook Packages: Computer ScienceComputer Science (R0)