Skip to main content

On the Reusability of ISIC Data for Training DL Classifiers Applied on Clinical Skin Images

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops (AIAI 2022)

Abstract

The ISIC archive is an open dermoscopy dataset containing thousands of images so that new Deep Learning skin classifiers can be trained. ISIC Challenges attract many participants to build a model that will bring the best performance to the ISIC test dataset. The question is whether such a model has consistent behavior in different datasets and other clinical images. In this work, we build and study the performance of a classifier trained in the ISIC 2019 dataset in three different cases: the performance during the cross-validation training process, the performance in the separate ISIC 2019 test dataset, and dermoscopy images taken from the SYGGROS skin disease hospital. The results show a stable performance compared to the metric F1 score for the categories in which there are more than 3000 images in the training dataset. In addition, we identify the factors that make it difficult to transfer and use classifiers from a competitive to a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Skin Cancer Facts & Statistics, https://www.skincancer.org/skin-cancer-information/skin-cancer-facts. Accessed 08 Mar 2019

  2. USCS Data Visualizations. https://gis.cdc.gov/Cancer/USCS/#/AtAGlance/. Accessed 09 Oct 2021

  3. Lucius, M., et al.: Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions. Diagnostics 10, 969 (2020). https://doi.org/10.3390/diagnostics10110969

    Article  Google Scholar 

  4. ISIC Archive, https://www.isic-archive.com/#!/topWithHeader/tightContentTop/about/aboutIsicOverview. Accessed 08 Oct 2021

  5. ISIC Challenge History, https://www.isic-archive.com/#!/topWithHeader/tightContentTop/about/isicChallengesHistory. Accessed 09 Oct 2021

  6. Valle, E., et al.: Data, depth, and design: learning reliable models for skin lesion analysis. Neurocomputing 383, 303–313 (2020). https://doi.org/10.1016/j.neucom.2019.12.003

    Article  Google Scholar 

  7. Lio, P.A., Nghiem, P.: Interactive Atlas of Dermoscopy: Giuseppe Argenziano, H. Peter Soyer, Vincenzo De Giorgio, Domenico Piccolo, Paolo Carli, Mario Delfino, Angela Ferrari, Rainer Hofmann-Wellenhof, Daniela Massi, Giampiero Mazzocchetti, Massimiliano Scalvenzi, and Ingrid H. Wolfpages. J. Am. Acad. Dermatol. 50, 807–808 (2004). https://doi.org/10.1016/j.jaad.2003.07.029.ISBN 88–86457–30–8

  8. Maron, R.C., et al.: A benchmark for neural network robustness in skin cancer classification. Eur. J. Cancer. 155, 191–199 (2021). https://doi.org/10.1016/j.ejca.2021.06.047

    Article  Google Scholar 

  9. Nahata, H., Singh, S.P.: Deep learning solutions for skin cancer detection and diagnosis. In: Jain, V., Chatterjee, J.M. (eds.) Machine Learning with Health Care Perspective. LAIS, vol. 13, pp. 159–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40850-3_8

    Chapter  Google Scholar 

  10. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data. 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

  11. Zhu, C.-Y., et al.: A deep learning based framework for diagnosing multiple skin diseases in a clinical environment. Front. Med. 8, 626369 (2021). https://doi.org/10.3389/fmed.2021.626369

    Article  Google Scholar 

  12. ISIC 2019, https://challenge2019.isic-archive.com/. Accessed 08 Oct 2021

  13. Module: tf.data | TensorFlow Core v2.7.0, https://www.tensorflow.org/api_docs/python/tf/data. Accessed 03 Feb 2022

  14. Codella, N.C.F., et al.: Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). ArXiv171005006 Cs. (2017). https://arxiv.org/abs/1710.05006v3

  15. Combalia, M., et al.: BCN20000: Dermoscopic Lesions in the Wild. ArXiv E-Prints. 1908, arXiv:1908.02288 (2019)

  16. Wasikowski, J.: Stratified Group k-Fold Cross-Validation. https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation

  17. Tan, M., Le, Q.V.: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ArXiv190511946 Cs Stat. (2020). http://arxiv.org/abs/1905.11946

  18. Ha, Q., Liu, B., Liu, F.: Identifying Melanoma Images using EfficientNet Ensemble: Winning Solution to the SIIM-ISIC Melanoma Classification Challenge. ArXiv201005351 Cs. (2020). http://arxiv.org/abs/2010.05351

  19. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A.: Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data. MethodsX 7, 100864 (2020). https://doi.org/10.1016/j.mex.2020.100864

    Article  Google Scholar 

  20. Zhou, S., Zhuang, Y., Meng, R.: Multi-Category Skin Lesion Diagnosis Using Dermoscopy Images and Deep CNN Ensembles (2019). https://challenge.isic-archive.com/leaderboards/2019/

  21. Kontogianni, G., Maglogiannis, I.: A review on state-of-the-art computer-based approaches for the early recognition of malignant melanoma. In: Maglogiannis, I., Brahnam, S., Jain, L.C. (eds.) Advanced Computational Intelligence in Healthcare-7. SCI, vol. 891, pp. 81–101. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61114-2_6

    Chapter  Google Scholar 

  22. Random-Erasing-tensorflow, https://github.com/uranusx86/Random-Erasing-tensorflow/blob/master/random_erasing.py

  23. Shawn, N.: Shades of Grey

    Google Scholar 

  24. Barata, C., Celebi, M.E., Marques, J.S.: Improving dermoscopy image classification using color constancy. IEEE J. Biomed. Health Inform. 19, 1146–1152 (2015). https://doi.org/10.1109/JBHI.2014.2336473

    Article  Google Scholar 

  25. Delibasis, K., Georgakopoulos, S.V., Tasoulis, S.K., Maglogiannis, I., Plagianakos, V.P.: On image prefiltering for skin lesion characterization utilizing deep transfer learning. In: Iliadis, L., Angelov, P.P., Jayne, C., Pimenidis, E. (eds.) EANN 2020. PINNS, vol. 2, pp. 377–388. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48791-1_29

    Chapter  Google Scholar 

  26. Georgakopoulos, S.V., Kottari, K., Delibasis, K., Plagianakos, V.P., Maglogiannis, I.: Detection of malignant melanomas in dermoscopic images using convolutional neural network with transfer learning. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds.) EANN 2017. CCIS, vol. 744, pp. 404–414. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65172-9_34

    Chapter  Google Scholar 

  27. tfa.optimizers.RectifiedAdam|TensorFlow Addons, https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/RectifiedAdam. Accessed 08 Oct 2021

  28. sklearn.metrics.classification_report, https://scikit-learn/stable/modules/generated/sklearn.metrics.classification_report.html. Accessed 08 Oct 2021

    Google Scholar 

  29. sklearn.metrics.precision_recall_fscore_support. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html. Accessed 08 Oct 2021

  30. ISIC Challenge 2019 Leaderboard - Lesion Diagnosis - Images Only, https://challenge.isic-archive.com/leaderboards/2019/. Accessed 12 Oct 2021

  31. Tziomaka, M., Maglogiannis, I.: Ensembles of deep convolutional neural networks for detecting melanoma in dermoscopy images. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds.) ICCCI 2021. LNCS (LNAI), vol. 12876, pp. 523–535. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88081-1_39

    Chapter  Google Scholar 

  32. Popescu, D., El-Khatib, M., El-Khatib, H., Ichim, L.: New trends in melanoma detection using neural networks: a systematic review. Sensors 22, 496 (2022). https://doi.org/10.3390/s22020496

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Alexios Zarras MD and Professor Alexander J. Stratigos MD, at the Department of Dermatology-Venereology, University of Athens Medical School, Andreas Sygros Hospital (Athens, Greece) for providing the SYGGROS Dataset used in this paper, as well as information on the technical specifications and collection procedures of the dataset.

Funding

This work was supported by the National Project TRANSITION – Translating the diagnostic complexity of melanoma into rational therapeutic stratification – Hellenic General Secretariat of Research and Technology, [Τ1ΕΔΚ-01385] co-funded by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Moutselos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moutselos, K., Maglogiannis, I. (2022). On the Reusability of ISIC Data for Training DL Classifiers Applied on Clinical Skin Images. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08341-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08340-2

  • Online ISBN: 978-3-031-08341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics